Cadeias estocásticas de memória ilimitada com aplicação na neurociência

Stochastic chains with unbounded memory are a natural generalization of Markov chains, in the sense that the transition probabilities may depend on the whole past. These process, introduced independently by Onicescu and Mihoc in 1935 and Doeblin and Fortet in 1937, have been receiving increasing att...

Nível de Acesso:openAccess
Publication Date:2019
Main Author: Ferreira, Ricardo Felipe lattes
Orientador/a: Gallo, Alexsandro Giacomo Grimbert lattes
Format: Tese
Language:por
Published: Universidade Federal de São Carlos
Câmpus São Carlos
Programa: Programa de Pós-graduação em Estatística UFSCar/USP
Assuntos em Português:
Assuntos em Inglês:
Áreas de Conhecimento:
Online Access:https://repositorio.ufscar.br/handle/ufscar/11229
Resumo Português:As cadeias estocásticas de memória ilimitada são uma generalização natural das cadeias de Markov, no caso em que as probabilidades de transição podem depender de todo o passado da cadeia. Estas cadeias, introduzidas, independentemente, por Onicescu e Mihoc em 1935 e Doeblin e Fortet em 1937, vêm recebendo uma atenção crescente na literatura probabilística, não só por serem uma classe mais rica que a classe das cadeias de Markov, como por suas capacidades práticas de modelagem de dados científicos em diversas áreas, indo da biologia à linguística. Neste trabalho, as utilizamos para modelar a interação entre sequências de disparos neuronais. Nosso objetivo principal é desenvolver novos resultados matemáticos acerca das cadeias de memória ilimitada. Inicialmente, estudamos as condições que garantem a existência e a unicidade de cadeias estacionárias compatíveis com uma família de probabilidades de transição descontínua. Em seguida, tratamos do entendimento da fenomenologia dos trens de disparos neuronais e usamos da informação dirigida para modelar a informação que flui de uma sequência de disparos a outra. Nesta ocasião, fixamos limites da concentração para estimação da informação dirigida.
Resumo inglês:Stochastic chains with unbounded memory are a natural generalization of Markov chains, in the sense that the transition probabilities may depend on the whole past. These process, introduced independently by Onicescu and Mihoc in 1935 and Doeblin and Fortet in 1937, have been receiving increasing attention in the probabilistic literature, because they form a class richer than the Markov chains and have practical capabilities modelling of scientific data in several areas, from biology to linguistics. In this work, we use them to model interactions between spike trains. Our main goal is to develop new mathematical results about stochastic chains with unbounded memory. First, we study conditions that guarantee the existence and uniqueness of stationary chains compatible with a discontinuous family of transition probabilities. Then, we address the understanding of the phenomenology of spike trains and we propose to use directed information to quantify the information flow from one neuron to another. In this occasion, we fix concentration bounds for directed information estimation.