Modelos de colonização e colapso

In this work a basic immigration process was investigated which starts with a single colony with a single individual at the origin of a homogeneous tree with the other empty vertices. The process colonies are established at the vertices of the graph and each one grows during a random time, according...

Nível de Acesso:openAccess
Publication Date:2017
Main Author: Rezende, Bruna Luiza de Faria lattes
Orientador/a: Vargas Júnior, Valdivino lattes
Banca: Roldán-Correa, Alejandro, Macedo, Abiel Costa, Vargas, Tiago Moreira
Format: Dissertação
Language:por
Published: Universidade Federal de Goiás
Programa: Programa de Pós-graduação em Matemática (IME)
Department: Instituto de Matemática e Estatística - IME (RG)
Assuntos em Português:
Assuntos em Inglês:
Áreas de Conhecimento:
Online Access:http://repositorio.bc.ufg.br/tede/handle/tede/7779
Citação:REZENDE, Bruna Luiza de Faria. Modelos de colonização e colapso. 2017. 86 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.
Resumo Português:In this work a basic immigration process was investigated which starts with a single colony with a single individual at the origin of a homogeneous tree with the other empty vertices. The process colonies are established at the vertices of the graph and each one grows during a random time, according to a process of general counting until a disaster that annihilates part of the population occurs. After the collapse a random amount of individuals survives and attempts to establish, in a independent manner, new colonies in a neighboring vertices. After a time these formed colonies also suffer catastrophes and the process is repeated. It is important to emphasize that the time until the disaster of each colony is independent of the others. Here this general process was studied under two methods, Poisson growth with geometric catastrophe and Yule growth with binomial catastrophe. That is, in each colony the population grows following a Poisson (or Yule), process during a random time, considered here exponential, and soon after that time its size is reduced according to the geometric (or binomial) law. Conditions were analyzed in the set of parameters so that these processes survived and limits were established that were relevant for the probability of survival, the number of colonies generated during the process and the range of the colonies in relation to the initial point.
Neste trabalho foi investigado um processo básico de imigração o qual é iniciado com uma única colônia com um único indivíduo na origem de uma árvore homogênea com os demais vértices vazios. As colônias do processo se estabelecem nos vértices do grafo e cada uma cresce durante um tempo aleatório, de acordo com um processo de contagem geral até ocorrer um desastre que aniquila parte da população. Após o colapso uma quantidade aleatória de indivíduos sobrevive e tenta estabelecer, de forma independente, novas colônias em vértices vizinhos. Depois de um tempo essas colônias formadas também sofrem catástrofes e o processo se repete. É importante enfatizar que o tempo até o desastre de cada colônia independe do das demais. Aqui esse processo geral foi estudado sujeito a dois métodos, crescimento de Poisson com catástrofe geométrica e crescimento de Yule com catástrofe binomial. Ou seja, em cada colônia a população cresce seguindo um processo de Poisson (ou Yule), durante um tempo aleatório, considerado aqui exponencial, e logo após esse tempo seu tamanho é reduzido de acordo com a lei geométrica (ou binomial). Foram analisadas condições no conjunto de parâmetros para que esses processos sobrevivam e foram estabelecidos limites relevantes para a probabilidade de sobrevivência, o número de colônias geradas durante o processo e o alcance das colônias em relação ao ponto inicial.