Sais de L-Histidina: crescimento e caracterização por Difração de raios-X

In this work, L-Histidine hydrobromide monohydrate (C6H12N3O3Br) (LHHBr) and L-Histidine hydrochloride monohydrate (C6H12N3O3Cl) (LHHCl) crystals are studied by Thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD) and...

Nível de Acesso:openAccess
Publication Date:2015
Main Author: MOURA, Geanso Miranda de lattes
Orientador/a: SANTOS, Adenilson Oliveira dos lattes
Format: Dissertação
Language:por
Published: Universidade Federal do Maranhão
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DOS MATERIAIS/CCSST
Department: COORDENAÇÃO DO CURSO DE CIÊNCIA E TECNOLOGIA - IMPERATRIZ/CCSST
Assuntos em Português:
Assuntos em Inglês:
Áreas de Conhecimento:
Online Access:http://tedebc.ufma.br:8080/jspui/handle/tede/1414
Citação:MOURA, Geanso Miranda de. Sais de L-Histidina: crescimento e caracterização por Difração de raios-X. 2015. [94 folhas]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DOS MATERIAIS/CCSST) - Universidade Federal do Maranhão, [Imperatriz] .
Resumo Português:Neste trabalho, cristais de L-Histidina hidrobromídrica monohidratada (C6H12N3O3Br) (LHHBr) e L-Histidina hidroclorídrica monohidratada (C6H12N3O3Cl) (LHHCl) foram estudados por Termogravimetria (TGA), Análise Térmica Diferencial (DTA), Calorimetria Exploratória Diferencial (DSC), Difração de raios-X (DRX) e Espectroscopia Raman variando-se a temperatura como parâmetro termodinâmico. Os experimentos de análise térmica (TGA, DTA e DSC) foram realizados entre 30 e 500 °C, enquanto que os experimentos de DRX foram realizados entre 30 e 190 °C devido ao ponto de fusão das amostras. Dos experimentos realizados, observou-se que a LHHBr é estável até 100 °C e sofre uma transição estrutural entre 110 e 130 °C, enquanto que a LHHCl é estável até 130 °C e sofre uma transição estrutural entre 135 e 150 °C. Através do método Le Bail foi possível determinar a estrutura das amostras após a transição de fase (ortorrômbica-monoclínica) em função da temperatura. Os parâmetros de rede da nova fase foram determinados sendo para a LHHBr a= 12,159(1) Å, b= 16,755(2) Å, c= 19,278(9) Å, β= 108,49(6)° e para LHHCl a= 10,775(6) Å, b= 15,340(9) Å, c= 21,699(6) Å, β= 102,20(3)°. Através das medidas de DRX em função da temperatura também foi possível determinar o coeficiente de dilatação para a fase ortorrômbica. O coeficiente de dilatação obtido para a LHHBr nos eixos cristalográficos foram: α[100]= 6,41(5) x 10-6 °C-1, α[010]= 28,7(6) x 10-6 °C-1 e α[001]= 52,2(9) x 10-6 °C-1. Para a LHHCl o coeficiente de dilatação obtido para a fase ortorrômbica nos eixos cristalográficos foram: α[100]= 4,92(3) x 10-6 °C-1, α[010]= 32,08(2) x 10-6 °C-1 e α[001]= 39,60(6) x 10-6 °C-1. Os resultados de expansão térmica obtidos evidenciam uma dilatação anisotrópica. As análises mostraram que as transições são atribuídas à perda de água estrutural e a diferença na estabilidade térmica deve-se aos seguintes fatores: maior número de ligações de hidrogênio na amostra de LHHCl, ligações mais estáveis devido à maior eletronegatividade e menor raio atômico do átomo de cloro em comparação ao átomo de bromo no interior da célula unitária.
Resumo inglês:In this work, L-Histidine hydrobromide monohydrate (C6H12N3O3Br) (LHHBr) and L-Histidine hydrochloride monohydrate (C6H12N3O3Cl) (LHHCl) crystals are studied by Thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD) and Raman Spectroscopy as a function of the temperature. The thermal analysis experiments (TGA, DTA and DSC) were performed between 30 and 500 °C, and XRD experiments were performed between 30 and 190 °C due to melting point. It has been observed that LHHBr is stable up to 100 °C and undergoes a structural phase transition between 110 and 130 °C, whereas LHHCl is stable up to 130 °C and undergoes a structural phase transition between 135 to 150 °C. The Le Bail method was used to determine the samples structure after the phase transition (orthorhombic-monoclinic) as a function of the temperature. Moreover, it was possible to determine the lattice parameters of the new phase. For LHHBr, where obtained lattice parameters: a= 12,159(1) Å, b= 16,755(2) Å, c= 19,278(9) Å, β= 108,49(6)°. For LHHCl the unit cell dimensions were obtained: a= 10,775(6) Å, b= 15,340(9) Å, c= 21,699(6) Å, β= 102,20(3)°. Through the XRD measurements as function of temperature was also possible to determine the expansion coefficient of orthorhombic phase. The expansion coefficients obtained for the LHHBr along the crystallographic axes were: α[100]= 6,41(5) x 10-6 °C-1, α[010]= 28,7(6) x 10-6 °C-1 and α[001]= 52,2(9) x 10-6 °C-1. For LHHCl the expansion coefficient obtained for the orthorhombic phase in the crystallographic axes were: α[100]= 4,92(3) x 10-6 °C-1, α[010]= 32,08(2) x 10-6 °C-1 and α[001]= 39,60(6) x 10-6 °C-1. The thermal expansion results have shown an anisotropic expansion. The analysis shown that the transitions are due to loss of structural water and the difference in thermal stability can be attributed to factors such as: high number of hydrogen bonds in the LHHCl crystal, more stable bonds due the higher electronegativity and smaller atomic radius compared chloride for bromide atom inside the unit cell.