ESTIMATIVA DA MASSA ESPECÍFICA EM ETANOL COMBUSTÍVEL POR MODELOS DE REDES NEURAIS ARTIFICIAIS E DE REGRESSÃO POR MÍNIMOS QUADRADOS PARCIAIS

The ethanol has continuously gained interests in many countries including Brazil due to the PROÁLCOOL program. The experimental determination of properties of ethanol and other fuels through official methods is very time consuming as well as tedious process. The estimation of these properties with t...

Nível de Acesso:openAccess
Publication Date:2013
Main Author: Santos, Marcelo José Castro dos lattes
Orientador/a: Marques, Aldaléa Lopes Brandes lattes
Co-advisor: Marques, Edmar Pereira lattes
Format: Dissertação
Language:por
Published: Universidade Federal do Maranhão
Programa: PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA/CCET
Department: QUIMICA
Assuntos em Portugês:
Assuntos em Inglês:
Áreas de Conhecimento:
Online Access:http://tedebc.ufma.br:8080/jspui/handle/tede/951
Citação:SANTOS, Marcelo José Castro dos. ESTIMATION OF SPECIFIC MASS IN FUEL ETHANOL BY MODELS OF ARTIFICIAL NEURAL NETWORK AND OF PARTIAL LEAST SQUARES REGRESSION. 2013. 52 f. Dissertação (Mestrado em QUIMICA) - Universidade Federal do Maranhão, São Luís, 2013.
Resumo Português:O etanol tem alcançado crescente interesse em muitos países, principalmente, no Brasil devido ao programa PROÁLCOOL. A determinação experimental das propriedades deste biocombustível e de outros combustíveis por meio de métodos oficiais é muito demorada, bem como é considerado um tedioso processo. A estimativa dessas propriedades com a ajuda de ferramentas computacionais pode ser de grande utilidade. No presente trabalho, os métodos de regressão por mínimos quadrados parciais (PLS) e redes neurais artificiais de múltiplas camadas (RNA) foram usados para estimar uma das mais importantes propriedades do etanol combustível, massa específica, utilizando parâmetros de qualidade oficiais de etanol, oriundos de análises realizadas no laboratório LAPQAP/UFMA, durante 12 anos (período: 2002-2013). Inicialmente, uma análise cuidadosa dos dados foi realizada a fim de selecionar um conjunto de variáveis e dados que melhor representasse um desempenho satisfatório dos dois modelos estudados. As estimativas de ambas as abordagens foram comparadas e validadas. A capacidade preditiva da rede neural obtida foi considerada muito boa para os parâmetros estudados, e compatível com a precisão das medidas experimentais. O baixo erro quadrático médio, a aleatoriedade, a média nula e a variância constante, obtida para os resíduos, evidenciaram a adequabilidade dos modelos usados, sugerindo a utilização destes modelos para estimar (predizer) a massa específica do etanol. Resultados indicaram que o modelo de RNA foi adequado, sendo o valor de NMSE (erro quadrático médio normalizado) de 0,0012, valor este, muito inferior ao modelo de PLS de 0,2221. Este resultado alcançado é inferior aos valores da faixa de incerteza de medição do equipamento responsável pelo ensaio experimental da massa específica, comprovando que o modelo utilizado possui desempenho considerado muito bom.
Resumo inglês:The ethanol has continuously gained interests in many countries including Brazil due to the PROÁLCOOL program. The experimental determination of properties of ethanol and other fuels through official methods is very time consuming as well as tedious process. The estimation of these properties with the help of computational tools can be very useful. In the present work, the methods of partial least squares regression (PLS) and artificial neural network multilayer (ANN) were used to estimate one of the most important properties of fuel ethanol, density, using official quality parameters for ethanol, collected from LAPQAP/UFMA laboratory corresponding to 12 years (period: 2002-2013) of analyzes. A careful analysis of the data was performed to obtain a set of variables and data that best represents satisfactory performance of the two models. The estimates of both approaches were compared and validated. The predictive ability of the network obtained was very good for the parameters studied, consistent with the accuracy of the experimental measurements. The low mean square error, the randomness, the zero mean and the constant variance, obtained for the residues, indicated the suitability of the models, suggesting their use to estimate (predict) the density of ethanol. Results indicated that the model ANN was adequate, and the value of NMSE (normalized mean square error) of 0.0012, less than the PLS model of 0.2221. The result achieved is less than the range of measurement uncertainty of the equipment responsible for testing the density proving that the model used has satisfactory performance.