Caracterização fisiológica de plantas superexpressando GmNAC6 em soja e seus efeitos na morte celular programada

Prolonged ER stress and osmotic stress synergistically activate the stress-induced N-rich protein (NRP)-mediated signaling that transduces a cell death signal by inducing GmNAC6 in soybean. To identify novel regulators of the stress-induced programmed cell death (PCD) response, we screened a two-hyb...

Nível de Acesso:openAccess
Publication Date:2013
Main Author: Mendes, Giselle Camargo lattes
Orientador/a: Fontes, Elizabeth Pacheco Batista lattes
Co-advisor: Nesi, Adriano Nunes lattes, Loureiro, Marcelo Ehlers lattes
Banca: Araujo, Wagner Luiz lattes, Martins, Gilberto Sachetto lattes, Fietto, Luciano Gomes lattes
Format: Tese
Language:por
Published: Universidade Federal de Viçosa
Programa: Doutorado em Fisiologia Vegetal
Department: Controle da maturação e senescência em órgãos perecíveis; Fisiologia molecular de plantas superiores
Assuntos em Português:
Assuntos em Inglês:
Áreas de Conhecimento:
Online Access:http://locus.ufv.br/handle/123456789/997
Citação:MENDES, Giselle Camargo. Physiological characterization of plants over expressing GmNAC6 in soybean and its effects on programmed cell death. 2013. 115 f. Tese (Doutorado em Controle da maturação e senescência em órgãos perecíveis; Fisiologia molecular de plantas superiores) - Universidade Federal de Viçosa, Viçosa, 2013.
Resumo Português:O estresse no RE e o estresse osmótico prolongado convergem sinergicamente para a indução das proteínas N-Rich (NRP), as quais ativam o sinal de morte celular mediado pelas proteínas GmNAC6 em soja. Para identificar novos componentes da via de sinalização induzida por estresses que geram a resposta de morte celular programada (Programmed cell death - PCD) foi realizado um ensaio de duplo híbrido para identificar os parceiros de GmNAC6. Foi descoberto outro membro da família NAC, GmNAC30, capaz de interagir com GmNAC6 no núcleo de células de plantas para regular coordenadamente promotores dos genes alvos comuns, que possuem o cis elemento comum TGTG [TGC]. Nós descobrimos que GmNAC6 e GmNAC30 podem funcionar como ativadores ou repressores da transcrição e cooperam entre si para melhorar a regulação da transcrição de promotores alvo comuns, sugerindo que a heterodimerização pode ser necessária para a completa regulação da expressão do gene. Assim, GmNAC6 e GmNAC30 apresentam um perfil de expressão que se sobrepõe em resposta a vários estímulos ambientais e durante o desenvolvimento vegetal. Consistente com o papel na morte celular programada, GmNAC6 e GmNAC30 se ligam in vivo e transativam os promotores de enzimas hidrolíticas em protoplastos de soja. Um cis-elemento onde GmNAC6/GmNAC30 se ligam foi encontrado no promotor do gene que codifica uma enzima de processamento vacuolar (Vacuolar processing enzyme - VPE), a qual tem atividade de caspase-1 e é um executor da morte celular programada em plantas. Nós demonstramos que a expressão de GmNAC6 juntamente com GmNAC30 transativa o gene VPE em protoplastos de soja. Coletivamente, nossos resultados indicam que GmNAC30 coopera com GmNAC6 para induzir o evento de PCD pela ativação de VPE. A interpretação que GmNAC6 funciona como regulador da PCD induzida por estresse via indução de VPE, uma enzima chave envolvida na morte celular programada pelo colapso do vacúolo, levantou a possibilidade que GmNAC6 funcione como um regulador da senescência foliar. Para elucidar esta questão, plantas de soja variedade BR16 foram transformadas com o gene GmNAC6 sob o controle do promotor 35S, e a análise da incorporação do transgene foi realizada por PCR até a terceira geração. Três linhagens transgênicas homozigotas (geração T3) foram selecionadas e apresentaram níveis semelhantes de expressão de GmNAC6. As três linhagens transgênicas (GmNAC6.1, GmNAC6.2 e GmNAC6.3) foram fenotipicamente idênticas à linhagem controle (não transformada) durante a fase vegetativa de desenvolvimento e durante o florescimento. No entanto, na fase reprodutiva de desenvolvimento R3, a senescência foliar das linhagens transgênicas foi acelerada em comparação com as plantas controle. Em todas as três linhagens transgênicas, a expressão ectópica de GmNAC6 acelerou o amarelecimento foliar, o qual está associado a uma maior perda de pigmentos (clorofila-a e b, e os carotenóides) e ao maior acumúmulo de ROS em comparação com as plantas controle. Além disso, a senescência precoce das plantas transgênicas foi associada a uma maior indução de genes marcadores de senescência nas folhas na fase R3 de desenvolvimento em comparação com os níveis nas folhas das plantas controle. Consistente com o papel como um regulador da transcrição da expressão do gene VPE, a superexpressão de GmNAC6 induziu um acúmulo muito maior dos transcritos VPE nas linhas transgênicas quando comparado as plantas controle no mesmo estádio de desenvolvimento R3. Sabendo que VPE media a morte celular pelo colapso do vacúolo, que GmNAC6 induz a expressão de VPE e que o aceleramento da senescência nas plantas transgênicas esta associado a expressão temporal e espacial de VPE, é razoável propor que GmNAC6 regula a senescência foliar via indução da VPE, um tipo de PCD que é mediada pelo colapso vacuolar. Como mais uma evidência de que GmNAC6 pode regular a senescência foliar, as linhagens transgênicas super expressando GmNAC6 exibem uma maior sensibilidade ao estresse abiótico, ao estresse osmótico, ao estresse do RE e a seca. Portanto, os resultados da presente investigação suportam ainda mais a noção de que a tolerância das plantas ao estresse abiótico está geneticamente ligada à longevidade da folha.
Resumo inglês:Prolonged ER stress and osmotic stress synergistically activate the stress-induced N-rich protein (NRP)-mediated signaling that transduces a cell death signal by inducing GmNAC6 in soybean. To identify novel regulators of the stress-induced programmed cell death (PCD) response, we screened a two-hybrid library for partners of GmNAC6. Here we discovered another member of the NAC family, GmNAC30, which binds to GmNAC6 in the nucleus of plant cells to coordinately regulate common target promoters, which harbor the core cisregulatory element TGTG[TGC]. We found that GmNAC6 and GmNAC30 can function either as transcriptional repressors or activators and cooperate to each other to enhance transcriptional regulation of common target promoters, suggesting that heterodimerization may be required for full regulation of gene expression. Accordingly, GmNAC6 and GmNAC30 display an overlapped expression profile in response to multiple environmental and developmental stimuli. Consistent with a role in programmed cell death, GmNAC6 and GmNAC30 bind in vivo to and transactivate hydrolytic enzyme promoters in soybean protoplasts. A GmNAC6/GmNAC30 binding site is found in the promoter of the caspase-1 like vacuolar processing enzyme (VPE) gene, an executioner of programmed cell death in plants. We showed that expression of GmNAC6 along with GmNAC30 fully transactivate VPE gene in soybean protoplasts. Collectively our results indicate that GmNAC30 cooperates with GmNAC6 to activate PCD through induction of the cell death executioner VPE. The interpretation that GmNAC6 functions as a regulator of stress-induced PCD, likely via induction of VPE, a key enzyme involved in vacuole-mediated PCD, raised the possibility that GmNAC6 would function as a regulator of leaf senescence as well. To address this issue, soybean plants, variety BR16, were transformed with GmNAC6 under the control of the 35S promoter and analysis of transgene incorporation was carried out by PCR for three generations. Three homozygous transgenic lines (T3 generation) were selected as they display similar levels of GmNAC6 expression. All three transgenic lines (GmNAC6.1, GmNAC6.2 and GmNAC6.3) were phenotypically identical to the control, untransformed line during the vegetative phase of development and flowered with similar rate and period. However, at the R3 stage of development, the leaf senescence in the transgenic lines was accelerated as compared to control leaves. In all three transgenic lines, ectopic expression of GmNAC6 accelerated leaf yellowing that was associated with a greater loss of pigments (Chlorophyll a and b, and carotenoids) and a higher accumulation of ROS, as compared to the control plants. Furthermore the early senescence phenotype displayed by the transgenic lines was associated with a higher induction of senescence marker genes in their leaves at the R3 developmental stage in comparison with the levels in the control leaves. Consistent with a role as a transcriptional regulator of VPE gene expression, the overexpression of GmNAC6 induced VPE transcript accumulation in the transgenic lines to a much higher extent than those in the control lines at the R3 developmental stage. Given that VPE is an executioner of vacuolemediated PCD, GmNAC6 induces VPE expression and GmNAC6-mediated leaf senescence was directly correlated with temporal and spatial expression of VPE, it is reasonable to propose that GmNAC6 regulates leaf senescence via induction of VPE, a kind of PCD that is mediated by the vacuolar collapse. As further evidence that GmNAC6 may regulate developmentally programmed leaf senescence, the GmNAC6-overexpressing transgenic lines displayed an enhanced sensitivity to the abiotic stresses, osmotic stress, RE stress and drought. Therefore, the results of the present investigation further support the notion that plant tolerance to abiotic stresses is genetically linked to leaf longevity.