Estudos longitudinais e tratamento de dados ausentes em avaliações educacionais

Tese (doutorado)—Universidade de Brasília, Instituto de Psicologia, Departamento de Psicologia Social e do Trabalho, Programa de Pós-Graduação em Psicologia Social, do Trabalho e das Organizações, 2016.

Nível de Acesso:openAccess
Publication Date:2016
Main Author: Vinha, Luís Gustavo do Amaral
Orientador/a: Laros, Jacob Arie
Format: Tese
Language:por
Online Access:http://repositorio.unb.br/handle/10482/20204
http://dx.doi.org/10.26512/2016.02.T.20204
Citação:VINHA, Luís Gustavo do Amaral. Estudos longitudinais e tratamento de dados ausentes em avaliações educacionais. 2016. x, 124 f., il. Tese (Doutorado em Psicologia Social, do Trabalho e das Organizações)—Universidade de Brasília, Brasília, 2016.
Resumo inglês:O objetivo desta tese foi contribuir para o desenvolvimento da avaliação educacional por meio de: (a) estudo de simulação visando a avaliar o desempenho de alguns métodos de tratamento e o efeito dos dados ausentes nos resultados, (b) comparação de técnicas estatísticas avançadas usadas para tratamento de dados ausentes nos estudos longitudinais, (c) apresentação de um novo método para tratamento de dados ausentes e (d) aplicação do novo método na identificação de fatores associados ao desempenho escolar, tendo como base os dados de uma avaliação longitudinal. Para isso, foram utilizados os dados da avaliação educacional realizada no estado do Ceará. A tese está dividida em três manuscritos. O primeiro apresenta uma introdução à teoria relacionada aos dados ausentes, as metodologias geralmente utilizadas pelos pesquisadores e os possíveis impactos desses dados nos resultados das pesquisas. Por meio de um estudo de simulação, quatro métodos de tratamentos de dados ausentes (imputação pela média, listwise deletion, máxima verossimilhança e imputação múltipla) foram comparados. A imputação pela média apresentou o pior desempenho em todos os cenários e os demais métodos apresentaram resultados semelhantes. Um outro resultado do estudo de simulação foi que o uso de variáveis auxiliares na estimação por máxima verossimilhança e na imputação múltipla reduziu o viés das estimativas quando a ausência simulada não é ao acaso. O segundo manuscrito discute a classificação proposta por Rubin com ênfase na ausência de dados em estudos longitudinais. Esse manuscrito apresenta uma nova metodologia para o tratamento de dados ausentes não ao acaso (MNAR) no contexto de avaliações educacionais. Um estudo de simulação comparou os procedimentos listwise deletion, imputação múltipla e a metodologia proposta. Tendo como base o modelo de crescimento linear, verificou-se que o procedimento listwise deletion superestimou a taxa média de aprendizado. A imputação múltipla e a metodologia proposta geraram maiores estimativas para os coeficientes das variáveis independentes, e ainda identificaram efeitos de interação. Os resultados evidenciaram a importância da escolha da abordagem a ser utilizada no tratamento de dados faltantes. No terceiro manuscrito, a metodologia proposta para tratamento de dados ausentes foi utilizada no estudo de fatores associados ao desempenho escolar. Em uma amostra composta por 8.681 estudantes do ensino médio, 25,7% estava ausente em pelo menos um momento da avaliação. Verificou-se que a ausência estava relacionada às características dos estudantes e ao desempenho escolar avaliado. A taxa média de aprendizado estimada foi de 8,96 pontos, mas essa taxa varia significativamente entre os estudantes. Com a utilização de dados longitudinais e técnicas de tratamento de dados ausentes, os resultados corroboram estudos transversais de fatores associados ao desempenho escolar. Além disso, demonstra que variáveis relacionadas à idade, número de reprovações e período noturno têm efeitos negativos tanto na proficiência inicial, quanto na taxa de aprendizado.