Coerência parcial e aplicações

Neste trabalho foram estudadas algumas formas de relação entre séries temporais multivariadas. Discutiu-se, inicialmente, a função de coerência, uma função análoga a função de correlação(que é dada no domínio do tempo) calculada no domínio da freqüência. Foram estudadas também as funções de coerênci...

Nível de Acesso:openAccess
Publication Date:2009
Main Author: Kim Samejima Mascarenhas Lopes
Orientador/a: Pedro Alberto Morettin
Banca: João Ricardo Sato, Clelia Maria de Castro Toloi
Format: Dissertação
Language:por
Published: Universidade de São Paulo
Programa: Estatística
Assuntos em Português:
Assuntos em Inglês:
Online Access:http://www.teses.usp.br/teses/disponiveis/45/45133/tde-05112013-173150/
Resumo Português:Neste trabalho foram estudadas algumas formas de relação entre séries temporais multivariadas. Discutiu-se, inicialmente, a função de coerência, uma função análoga a função de correlação(que é dada no domínio do tempo) calculada no domínio da freqüência. Foram estudadas também as funções de coerência parcial e coerência parcial direcionada. A função de coerência parcial mede a relação entre duas componentes de uma série multivariada, isolados os efeitos de outra série. Em linhas gerais, a Coerência Parcial Direcionada pode ser interpredata como a decomposição da coerência parcial a partir de modelos autoregressivos multivariados. Esse conceito pode ser interpretado como uma representação do conceito de causalidade de Granger no domínio da freqüência. Finalmente, foram aplicadas as funções acima em dois conjuntos de dados: um modelo VAR(1) trivariado simulado e dados de medições de eletroencefalograma.
Resumo inglês:In this work we studied relationships between multivariate time series. We discussed the coherence function, a function similar to the correlation function(calculated in time domain) in frequency domain. Next, we discussed partial coherence and partial directed coherence. The partial coherence measures the relationship between two components of a multivariate time series, after removing the influence of another time series. Generally, the partial directed coherence can be interpreted as the decompositioin of the partial coherence from multivariate autoregressive models. We can interpret this function as a representation of the Granger causality concept in frequency domain. Finally, we applied these concepts in two situations: a simulated VAR(1) model and an electroencefalogram database.