Plasma térmico para ablação de materiais utilizados como escudo de proteção térmica em sistemas aeroespaciais.

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Edson de Aquino Barros
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=712
Resumo: Neste trabalho são apresentados estudos da degradação de materiais utilizados em sistemas de proteção térmica expostos a jatos de plasmas com fluxos de calor comparáveis aos da reentrada atmosférica de artefatos espaciais. Amostras foram ensaiadas em ambiente de plasma reativo de ar gerado por uma tocha de arco não transferido em corrente contínua, com entalpias entre 6,2MJ/kg e 9,4MJ/kg, correspondentes a fluxos térmicos na faixa de 0,5MW/m2 a 2,2MW/m2. A ênfase é dada aos materiais compósitos ablativos de quartzo-fenólico, formados com matriz de resina fenólica reforçados com fibras de quartzo, material desenvolvido e fabricado no Brasil, de especial interesse do Instituto de Aeronáutica e Espaço. Neste caso, no intuito de resolver problemas de delaminação e moldagem em camadas espessas de proteção térmica com geometrias complexas, foram fabricadas amostras com diferentes concentrações de resina fenólica (20, 32 e 42)%, utilizando-se configurações de tecido de quartzo inteiriço e picado. Para comparação, foram ensaiados outros materiais com propriedades já bem estabelecidas como o teflon e a cortiça, além do compósito carbono-fenólico (reforçado com fibras de carbono), sob as mesmas condições ablativas. Foram determinadas as taxas de perda de massa das amostras, o calor de ablação, as temperaturas radiométricas superficiais e termométricas internas, em função do tempo de exposição e do fluxo térmico. Adicionalmente, foi avaliada a perda de massa das amostras por análises termogravimétricas, o coeficiente de expansão térmica e a difusividade térmica das amostras. Os aspectos microestruturais foram investigados por Microscopia Eletrônica de Varredura (MEV). A composição superficial das amostras foi avaliada por difração de raios x (DRX) e espectroscopia de fotoelétrons excitados por raios x (XPS), antes e após o tratamento por plasma. Os resultados mostram que os compósitos quartzo-fenólico são os que apresentam maior calor de ablação, mais que o dobro do valor obtido para os demais materiais testados. Os compósitos carbono-fenólico apresentam quase o dobro da perda de massa comparado aos reforçados com fibra de quartzo, devido a maior volatilização da resina provocada pela maior difusividade de calor, em razão da maior condutividade térmica das fibras de carbono (11W/mK), comparada com as fibras de quartzo (1,5W/mK). A taxa de perda de massa do teflon é quase o triplo dos demais materiais e não há formação de camada superficial carbonizada, portanto as temperaturas radiométricas são menores (~900C) e mais estáveis. Neste material, para um aumento de 1MW/m2 no fluxo de calor incidente, constata-se elevação de temperatura de apenas 75C. A cortiça apresenta as menores condutividade térmica (~0,14W/mK) e massa específica (~0,1g/cm3), com taxa de perda de massa semelhante a do carbono-fenólico, porém, entre os materiais testados é o que sofre o maior taxa de erosão (~4mm/min) para um fluxo térmico de 0,8MW/m2. As análises por MEV do compósito quartzo-fenólico mostram que o uso de tecido de quartzo com malha picada, com concentrações moderadas de resina evita problemas de delaminação e excesso de rachaduras nas regiões de carbonização e adjacentes. Para fluxos térmicos mais elevados (~2MW/m2), as análises microestruturais mostram claramente a transformação de fibras maciças de quartzo em fibras ocas, na forma de tubos. As análises DRX e XPS indicam a formação de estrutura carbonosa amorfa na superfície e que os tubos são formados, principalmente, pela intensificação da oxidação das paredes das fibras, que são expostos a um jato de plasma de ar, atingindo temperaturas em torno do ponto de fusão do quartzo (~1600C). As micrografias do compósito quartzo-fenólico revelam ainda que a matriz sofre um processo de erosão mais intenso que a fibra e depende da direção do fluxo de plasma em relação ao eixo da fibra. Por meio da análise geral dos resultados focada na otimização do banco de ensaios para ablação materiais utilizados em sistemas de proteção térmica por plasma térmico, mostra-se a viabilidade de abrir um campo de pesquisas para desenvolvimento de materiais termoestruturais, até então inédito no Brasil e dispor de uma ferramenta indispensável para qualificar e certificar materiais de interesse da indústria aeroespacial.
id ITA_a9ba11e787134826ffc64eab6d94d44c
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:712
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Plasma térmico para ablação de materiais utilizados como escudo de proteção térmica em sistemas aeroespaciais.AblaçãoMateriais ablativosProteção térmicaMateriais compósitosReentrada atmosféricaTochas de plasmaTratamento térmicoRevestimentos protetoresEngenharia de materiaisNeste trabalho são apresentados estudos da degradação de materiais utilizados em sistemas de proteção térmica expostos a jatos de plasmas com fluxos de calor comparáveis aos da reentrada atmosférica de artefatos espaciais. Amostras foram ensaiadas em ambiente de plasma reativo de ar gerado por uma tocha de arco não transferido em corrente contínua, com entalpias entre 6,2MJ/kg e 9,4MJ/kg, correspondentes a fluxos térmicos na faixa de 0,5MW/m2 a 2,2MW/m2. A ênfase é dada aos materiais compósitos ablativos de quartzo-fenólico, formados com matriz de resina fenólica reforçados com fibras de quartzo, material desenvolvido e fabricado no Brasil, de especial interesse do Instituto de Aeronáutica e Espaço. Neste caso, no intuito de resolver problemas de delaminação e moldagem em camadas espessas de proteção térmica com geometrias complexas, foram fabricadas amostras com diferentes concentrações de resina fenólica (20, 32 e 42)%, utilizando-se configurações de tecido de quartzo inteiriço e picado. Para comparação, foram ensaiados outros materiais com propriedades já bem estabelecidas como o teflon e a cortiça, além do compósito carbono-fenólico (reforçado com fibras de carbono), sob as mesmas condições ablativas. Foram determinadas as taxas de perda de massa das amostras, o calor de ablação, as temperaturas radiométricas superficiais e termométricas internas, em função do tempo de exposição e do fluxo térmico. Adicionalmente, foi avaliada a perda de massa das amostras por análises termogravimétricas, o coeficiente de expansão térmica e a difusividade térmica das amostras. Os aspectos microestruturais foram investigados por Microscopia Eletrônica de Varredura (MEV). A composição superficial das amostras foi avaliada por difração de raios x (DRX) e espectroscopia de fotoelétrons excitados por raios x (XPS), antes e após o tratamento por plasma. Os resultados mostram que os compósitos quartzo-fenólico são os que apresentam maior calor de ablação, mais que o dobro do valor obtido para os demais materiais testados. Os compósitos carbono-fenólico apresentam quase o dobro da perda de massa comparado aos reforçados com fibra de quartzo, devido a maior volatilização da resina provocada pela maior difusividade de calor, em razão da maior condutividade térmica das fibras de carbono (11W/mK), comparada com as fibras de quartzo (1,5W/mK). A taxa de perda de massa do teflon é quase o triplo dos demais materiais e não há formação de camada superficial carbonizada, portanto as temperaturas radiométricas são menores (~900C) e mais estáveis. Neste material, para um aumento de 1MW/m2 no fluxo de calor incidente, constata-se elevação de temperatura de apenas 75C. A cortiça apresenta as menores condutividade térmica (~0,14W/mK) e massa específica (~0,1g/cm3), com taxa de perda de massa semelhante a do carbono-fenólico, porém, entre os materiais testados é o que sofre o maior taxa de erosão (~4mm/min) para um fluxo térmico de 0,8MW/m2. As análises por MEV do compósito quartzo-fenólico mostram que o uso de tecido de quartzo com malha picada, com concentrações moderadas de resina evita problemas de delaminação e excesso de rachaduras nas regiões de carbonização e adjacentes. Para fluxos térmicos mais elevados (~2MW/m2), as análises microestruturais mostram claramente a transformação de fibras maciças de quartzo em fibras ocas, na forma de tubos. As análises DRX e XPS indicam a formação de estrutura carbonosa amorfa na superfície e que os tubos são formados, principalmente, pela intensificação da oxidação das paredes das fibras, que são expostos a um jato de plasma de ar, atingindo temperaturas em torno do ponto de fusão do quartzo (~1600C). As micrografias do compósito quartzo-fenólico revelam ainda que a matriz sofre um processo de erosão mais intenso que a fibra e depende da direção do fluxo de plasma em relação ao eixo da fibra. Por meio da análise geral dos resultados focada na otimização do banco de ensaios para ablação materiais utilizados em sistemas de proteção térmica por plasma térmico, mostra-se a viabilidade de abrir um campo de pesquisas para desenvolvimento de materiais termoestruturais, até então inédito no Brasil e dispor de uma ferramenta indispensável para qualificar e certificar materiais de interesse da indústria aeroespacial.Instituto Tecnológico de AeronáuticaGilberto Petraconi FilhoEdson de Aquino Barros2008-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=712reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAporinfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:01:53Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:712http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:33:58.697Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Plasma térmico para ablação de materiais utilizados como escudo de proteção térmica em sistemas aeroespaciais.
title Plasma térmico para ablação de materiais utilizados como escudo de proteção térmica em sistemas aeroespaciais.
spellingShingle Plasma térmico para ablação de materiais utilizados como escudo de proteção térmica em sistemas aeroespaciais.
Edson de Aquino Barros
Ablação
Materiais ablativos
Proteção térmica
Materiais compósitos
Reentrada atmosférica
Tochas de plasma
Tratamento térmico
Revestimentos protetores
Engenharia de materiais
title_short Plasma térmico para ablação de materiais utilizados como escudo de proteção térmica em sistemas aeroespaciais.
title_full Plasma térmico para ablação de materiais utilizados como escudo de proteção térmica em sistemas aeroespaciais.
title_fullStr Plasma térmico para ablação de materiais utilizados como escudo de proteção térmica em sistemas aeroespaciais.
title_full_unstemmed Plasma térmico para ablação de materiais utilizados como escudo de proteção térmica em sistemas aeroespaciais.
title_sort Plasma térmico para ablação de materiais utilizados como escudo de proteção térmica em sistemas aeroespaciais.
author Edson de Aquino Barros
author_facet Edson de Aquino Barros
author_role author
dc.contributor.none.fl_str_mv Gilberto Petraconi Filho
dc.contributor.author.fl_str_mv Edson de Aquino Barros
dc.subject.por.fl_str_mv Ablação
Materiais ablativos
Proteção térmica
Materiais compósitos
Reentrada atmosférica
Tochas de plasma
Tratamento térmico
Revestimentos protetores
Engenharia de materiais
topic Ablação
Materiais ablativos
Proteção térmica
Materiais compósitos
Reentrada atmosférica
Tochas de plasma
Tratamento térmico
Revestimentos protetores
Engenharia de materiais
dc.description.none.fl_txt_mv Neste trabalho são apresentados estudos da degradação de materiais utilizados em sistemas de proteção térmica expostos a jatos de plasmas com fluxos de calor comparáveis aos da reentrada atmosférica de artefatos espaciais. Amostras foram ensaiadas em ambiente de plasma reativo de ar gerado por uma tocha de arco não transferido em corrente contínua, com entalpias entre 6,2MJ/kg e 9,4MJ/kg, correspondentes a fluxos térmicos na faixa de 0,5MW/m2 a 2,2MW/m2. A ênfase é dada aos materiais compósitos ablativos de quartzo-fenólico, formados com matriz de resina fenólica reforçados com fibras de quartzo, material desenvolvido e fabricado no Brasil, de especial interesse do Instituto de Aeronáutica e Espaço. Neste caso, no intuito de resolver problemas de delaminação e moldagem em camadas espessas de proteção térmica com geometrias complexas, foram fabricadas amostras com diferentes concentrações de resina fenólica (20, 32 e 42)%, utilizando-se configurações de tecido de quartzo inteiriço e picado. Para comparação, foram ensaiados outros materiais com propriedades já bem estabelecidas como o teflon e a cortiça, além do compósito carbono-fenólico (reforçado com fibras de carbono), sob as mesmas condições ablativas. Foram determinadas as taxas de perda de massa das amostras, o calor de ablação, as temperaturas radiométricas superficiais e termométricas internas, em função do tempo de exposição e do fluxo térmico. Adicionalmente, foi avaliada a perda de massa das amostras por análises termogravimétricas, o coeficiente de expansão térmica e a difusividade térmica das amostras. Os aspectos microestruturais foram investigados por Microscopia Eletrônica de Varredura (MEV). A composição superficial das amostras foi avaliada por difração de raios x (DRX) e espectroscopia de fotoelétrons excitados por raios x (XPS), antes e após o tratamento por plasma. Os resultados mostram que os compósitos quartzo-fenólico são os que apresentam maior calor de ablação, mais que o dobro do valor obtido para os demais materiais testados. Os compósitos carbono-fenólico apresentam quase o dobro da perda de massa comparado aos reforçados com fibra de quartzo, devido a maior volatilização da resina provocada pela maior difusividade de calor, em razão da maior condutividade térmica das fibras de carbono (11W/mK), comparada com as fibras de quartzo (1,5W/mK). A taxa de perda de massa do teflon é quase o triplo dos demais materiais e não há formação de camada superficial carbonizada, portanto as temperaturas radiométricas são menores (~900C) e mais estáveis. Neste material, para um aumento de 1MW/m2 no fluxo de calor incidente, constata-se elevação de temperatura de apenas 75C. A cortiça apresenta as menores condutividade térmica (~0,14W/mK) e massa específica (~0,1g/cm3), com taxa de perda de massa semelhante a do carbono-fenólico, porém, entre os materiais testados é o que sofre o maior taxa de erosão (~4mm/min) para um fluxo térmico de 0,8MW/m2. As análises por MEV do compósito quartzo-fenólico mostram que o uso de tecido de quartzo com malha picada, com concentrações moderadas de resina evita problemas de delaminação e excesso de rachaduras nas regiões de carbonização e adjacentes. Para fluxos térmicos mais elevados (~2MW/m2), as análises microestruturais mostram claramente a transformação de fibras maciças de quartzo em fibras ocas, na forma de tubos. As análises DRX e XPS indicam a formação de estrutura carbonosa amorfa na superfície e que os tubos são formados, principalmente, pela intensificação da oxidação das paredes das fibras, que são expostos a um jato de plasma de ar, atingindo temperaturas em torno do ponto de fusão do quartzo (~1600C). As micrografias do compósito quartzo-fenólico revelam ainda que a matriz sofre um processo de erosão mais intenso que a fibra e depende da direção do fluxo de plasma em relação ao eixo da fibra. Por meio da análise geral dos resultados focada na otimização do banco de ensaios para ablação materiais utilizados em sistemas de proteção térmica por plasma térmico, mostra-se a viabilidade de abrir um campo de pesquisas para desenvolvimento de materiais termoestruturais, até então inédito no Brasil e dispor de uma ferramenta indispensável para qualificar e certificar materiais de interesse da indústria aeroespacial.
description Neste trabalho são apresentados estudos da degradação de materiais utilizados em sistemas de proteção térmica expostos a jatos de plasmas com fluxos de calor comparáveis aos da reentrada atmosférica de artefatos espaciais. Amostras foram ensaiadas em ambiente de plasma reativo de ar gerado por uma tocha de arco não transferido em corrente contínua, com entalpias entre 6,2MJ/kg e 9,4MJ/kg, correspondentes a fluxos térmicos na faixa de 0,5MW/m2 a 2,2MW/m2. A ênfase é dada aos materiais compósitos ablativos de quartzo-fenólico, formados com matriz de resina fenólica reforçados com fibras de quartzo, material desenvolvido e fabricado no Brasil, de especial interesse do Instituto de Aeronáutica e Espaço. Neste caso, no intuito de resolver problemas de delaminação e moldagem em camadas espessas de proteção térmica com geometrias complexas, foram fabricadas amostras com diferentes concentrações de resina fenólica (20, 32 e 42)%, utilizando-se configurações de tecido de quartzo inteiriço e picado. Para comparação, foram ensaiados outros materiais com propriedades já bem estabelecidas como o teflon e a cortiça, além do compósito carbono-fenólico (reforçado com fibras de carbono), sob as mesmas condições ablativas. Foram determinadas as taxas de perda de massa das amostras, o calor de ablação, as temperaturas radiométricas superficiais e termométricas internas, em função do tempo de exposição e do fluxo térmico. Adicionalmente, foi avaliada a perda de massa das amostras por análises termogravimétricas, o coeficiente de expansão térmica e a difusividade térmica das amostras. Os aspectos microestruturais foram investigados por Microscopia Eletrônica de Varredura (MEV). A composição superficial das amostras foi avaliada por difração de raios x (DRX) e espectroscopia de fotoelétrons excitados por raios x (XPS), antes e após o tratamento por plasma. Os resultados mostram que os compósitos quartzo-fenólico são os que apresentam maior calor de ablação, mais que o dobro do valor obtido para os demais materiais testados. Os compósitos carbono-fenólico apresentam quase o dobro da perda de massa comparado aos reforçados com fibra de quartzo, devido a maior volatilização da resina provocada pela maior difusividade de calor, em razão da maior condutividade térmica das fibras de carbono (11W/mK), comparada com as fibras de quartzo (1,5W/mK). A taxa de perda de massa do teflon é quase o triplo dos demais materiais e não há formação de camada superficial carbonizada, portanto as temperaturas radiométricas são menores (~900C) e mais estáveis. Neste material, para um aumento de 1MW/m2 no fluxo de calor incidente, constata-se elevação de temperatura de apenas 75C. A cortiça apresenta as menores condutividade térmica (~0,14W/mK) e massa específica (~0,1g/cm3), com taxa de perda de massa semelhante a do carbono-fenólico, porém, entre os materiais testados é o que sofre o maior taxa de erosão (~4mm/min) para um fluxo térmico de 0,8MW/m2. As análises por MEV do compósito quartzo-fenólico mostram que o uso de tecido de quartzo com malha picada, com concentrações moderadas de resina evita problemas de delaminação e excesso de rachaduras nas regiões de carbonização e adjacentes. Para fluxos térmicos mais elevados (~2MW/m2), as análises microestruturais mostram claramente a transformação de fibras maciças de quartzo em fibras ocas, na forma de tubos. As análises DRX e XPS indicam a formação de estrutura carbonosa amorfa na superfície e que os tubos são formados, principalmente, pela intensificação da oxidação das paredes das fibras, que são expostos a um jato de plasma de ar, atingindo temperaturas em torno do ponto de fusão do quartzo (~1600C). As micrografias do compósito quartzo-fenólico revelam ainda que a matriz sofre um processo de erosão mais intenso que a fibra e depende da direção do fluxo de plasma em relação ao eixo da fibra. Por meio da análise geral dos resultados focada na otimização do banco de ensaios para ablação materiais utilizados em sistemas de proteção térmica por plasma térmico, mostra-se a viabilidade de abrir um campo de pesquisas para desenvolvimento de materiais termoestruturais, até então inédito no Brasil e dispor de uma ferramenta indispensável para qualificar e certificar materiais de interesse da indústria aeroespacial.
publishDate 2008
dc.date.none.fl_str_mv 2008-12-17
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=712
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=712
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Ablação
Materiais ablativos
Proteção térmica
Materiais compósitos
Reentrada atmosférica
Tochas de plasma
Tratamento térmico
Revestimentos protetores
Engenharia de materiais
_version_ 1706804988945104896