Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Rodríguez, Eduardo Rafael Llapa
Orientador(a): Saito, José Hiroki lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
ICA
Palavras-chave em Inglês:
ICA
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/7865
Resumo: This thesis combines image and signal processing to obtain virtual neuron distribution maps in a Microelectrode Array (MEA), which are devices designed for non-invasive electrophysiological signal recording for in vitro cultures of neuron cells. In the electrophysiological signal analysis, it is of interest the knowledge of the topological distribution of the cells along the MEA microelectrodes, but, usually the photographic images of the cell culture are not available. This doctoral work presents an approach to obtain the statistical topologic distribution of the neurons of an in vitro cell culture, denoted virtual distribution of neurons, from the electrophysiological signals. To certify that the statistical computation of the neuron counting is associated to each MEA microelectrode, it is used the ICA (Independent component Analysis) technique, for the separation of the neuron signals distributed throughout the MEA area, to obtain for each microelectrode, only the signals from its adjacent neurons. Assuming the hypothesis that the spontaneous neuron activities, spikes and bursts, are directly proportional to the neuron counting, it is realized the spike counting and burst counting, and it is assigned for each microelectrode, a number of neurons proportional to that numbers of activities. For the validation of the proposal, as well as for calibration of the system, to obtain the estimated number of neurons, it was used an experiment denoted 371, realized in Genoa University, Italy, in which it was recorded electrophysiological signals in 46 DIVs (Days In- Vitro), obtaining 20 minutes of recording in 25, 29, 32, 36, 39, 43, and 46 DIVs, and a set of photographic images in 38 DIV. Assuming that microelectrode neuron counting in the 38 DIV photographic image is proportional to the 39 DIV spontaneous electrophysiological activity signal recording, one day after the imaging, if was determined the neuron counting as function of the spontaneous electrophysiological activities recording, in a process denoted as calibration of the virtual number of neurons. The distance error from the neuron activities as function of the neuron counting in photographic image and in function of the recorded electrophysiological signals was calculated and compared for validation. In this way, it was possible to construct virtual topologic maps of neurons, proportional to the electrophysiological activities measured in 39 DIV, as a function of the spike and the burst countings. Comparing these two virtual maps, the spike counting virtual map was more close to the real neuron distributions viewed at the photographic image of 38 DIV. Also, the variance of the spike and burst counting along the 20 min of electrophysiological recording in a DIV, was calculated, and noted that the spike counting is more stable than burst counting.
id SCAR_2ce7d04b221689b32701c73efb170cec
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7865
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Rodríguez, Eduardo Rafael LlapaSaito, José Hirokihttp://lattes.cnpq.br/7065615446493390http://lattes.cnpq.br/30043353032702545c8eadc3-b393-4939-9052-b4e1623f81662016-10-14T14:11:41Z2016-10-14T14:11:41Z2015-12-15RODRÍGUEZ, Eduardo Rafael Llapa. Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos. 2015. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7865.https://repositorio.ufscar.br/handle/ufscar/7865This thesis combines image and signal processing to obtain virtual neuron distribution maps in a Microelectrode Array (MEA), which are devices designed for non-invasive electrophysiological signal recording for in vitro cultures of neuron cells. In the electrophysiological signal analysis, it is of interest the knowledge of the topological distribution of the cells along the MEA microelectrodes, but, usually the photographic images of the cell culture are not available. This doctoral work presents an approach to obtain the statistical topologic distribution of the neurons of an in vitro cell culture, denoted virtual distribution of neurons, from the electrophysiological signals. To certify that the statistical computation of the neuron counting is associated to each MEA microelectrode, it is used the ICA (Independent component Analysis) technique, for the separation of the neuron signals distributed throughout the MEA area, to obtain for each microelectrode, only the signals from its adjacent neurons. Assuming the hypothesis that the spontaneous neuron activities, spikes and bursts, are directly proportional to the neuron counting, it is realized the spike counting and burst counting, and it is assigned for each microelectrode, a number of neurons proportional to that numbers of activities. For the validation of the proposal, as well as for calibration of the system, to obtain the estimated number of neurons, it was used an experiment denoted 371, realized in Genoa University, Italy, in which it was recorded electrophysiological signals in 46 DIVs (Days In- Vitro), obtaining 20 minutes of recording in 25, 29, 32, 36, 39, 43, and 46 DIVs, and a set of photographic images in 38 DIV. Assuming that microelectrode neuron counting in the 38 DIV photographic image is proportional to the 39 DIV spontaneous electrophysiological activity signal recording, one day after the imaging, if was determined the neuron counting as function of the spontaneous electrophysiological activities recording, in a process denoted as calibration of the virtual number of neurons. The distance error from the neuron activities as function of the neuron counting in photographic image and in function of the recorded electrophysiological signals was calculated and compared for validation. In this way, it was possible to construct virtual topologic maps of neurons, proportional to the electrophysiological activities measured in 39 DIV, as a function of the spike and the burst countings. Comparing these two virtual maps, the spike counting virtual map was more close to the real neuron distributions viewed at the photographic image of 38 DIV. Also, the variance of the spike and burst counting along the 20 min of electrophysiological recording in a DIV, was calculated, and noted that the spike counting is more stable than burst counting.Esta tese combina processamento de imagens e sinais, para a obtenção de uma distribuição virtual de neurônios em Matrizes de microeletrodos (Microelectrode Array, MEA), dispositivos projetados para o registro de sinais eletrofisiológicos de culturas de células neuronais, in-vitro, de forma não-invasiva. Na análise dos sinais eletrofisiológicos é de interesse o conhecimento da distribuição topológica das células ao longo dos microeletrodos, porém, nem sempre as imagens fotográficas das culturas são disponíveis. O presente trabalho apresenta uma metodologia de obtenção da distribuição topológica estatística dos neurônios numa cultura in-vitro, a partir dos sinais eletrofisiológicos. Para o cálculo estatístico do número de neurônios nessa distribuição topológica, é feito o uso da técnica de ICA (Independent Component Analysis), para obter os sinais relativos aos neurônios mais próximos para cada microeletrodo. Assumindo-se a hipótese de que as atividades eletrofisiológicas espontâneas dos neurônios, spikes e bursts, sejam diretamente proporcionais ao número de neurônios, realiza-se a contagem do número de spikes ou o número de bursts, e atribui-se o número de neurônios para cada microeletrodo, proporcionalmente à quantidade dessas atividades. Para a validação da proposta, foi utilizado um experimento, Experimento 371, realizado na Universidade de Gênova, Itália, em que foram registrados os sinais eletrofisiológicos ao longo de 46 DIVs (Dias In-Vitro), obtendo amostras de 20 minutos de registros para os 25, 29, 32, 36, 39, 43 e 46 DIVs, e um conjunto de imagens fotográficas da cultura no 38 DIV. Considerando-se que o número de neurônios associados a cada microeletrodo na imagem fotográfica no 38 DIV é proporcional à atividade eletrofisiológica espontânea dos neurônios, num registro realizado no 39 DIV, um dia após as fotos, foi feita uma regra de determinação do número virtual de neurônios em função das atividades eletrofisiológicas espontâneas medidas, denominada de calibração. O erro relativo à distância da atividade dos neurônios em relação à quantidade de neurônios na imagem fotográfica, e a atividade dos neurônios em função do registro de sinais eletrofisiológicos é calculado para comparação e validação. Dessa forma são construídos os mapas topológicos virtuais de neurônios proporcionais às atividades eletrofisiológicas medidas no 39 DIV, em função da quantidade de spikes e de bursts. O mapa obtido pela contagem de spikes se aproxima mais da distribuição real de neurônios vista na imagem fotográfica, do que o mapa obtido em função da contagem de bursts. No estudo de variância de atividades em função da contagem de spikes e bursts durante os 20 minutos de medidas num DIV, e constata-se que as atividades em contagem spikes é mais estável que em contagem de bursts.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarMatriz de microeletrodosSinais eletrofisiológicosCulturas de neurônios in-vitroICAMapeamento topológico de neurôniosAnálise quantitativaImagemMicroelectrode arrayEletrofisiological signalsIn-vitro neuron cultureICATopological neuron mappingQuantitative analysisImageCIENCIAS EXATAS E DA TERRAMapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline60060051b9675e-5744-4345-98e1-2c5caead4a56info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseERLR.pdfTeseERLR.pdfapplication/pdf4461748https://repositorio.ufscar.br/bitstream/ufscar/7865/1/TeseERLR.pdf2fe540767de5ff5f23af02775508026bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7865/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseERLR.pdf.txtTeseERLR.pdf.txtExtracted texttext/plain244123https://repositorio.ufscar.br/bitstream/ufscar/7865/3/TeseERLR.pdf.txtbf741d938ba6961950312badc3214951MD53THUMBNAILTeseERLR.pdf.jpgTeseERLR.pdf.jpgIM Thumbnailimage/jpeg9855https://repositorio.ufscar.br/bitstream/ufscar/7865/4/TeseERLR.pdf.jpg9ed350c3434ea655e1a9e9aafa4fd65dMD54ufscar/78652023-09-18 18:30:57.338oai:repositorio.ufscar.br:ufscar/7865TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:57Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos
title Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos
spellingShingle Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos
Rodríguez, Eduardo Rafael Llapa
Matriz de microeletrodos
Sinais eletrofisiológicos
Culturas de neurônios in-vitro
ICA
Mapeamento topológico de neurônios
Análise quantitativa
Imagem
Microelectrode array
Eletrofisiological signals
In-vitro neuron culture
ICA
Topological neuron mapping
Quantitative analysis
Image
CIENCIAS EXATAS E DA TERRA
title_short Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos
title_full Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos
title_fullStr Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos
title_full_unstemmed Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos
title_sort Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos
author Rodríguez, Eduardo Rafael Llapa
author_facet Rodríguez, Eduardo Rafael Llapa
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3004335303270254
dc.contributor.author.fl_str_mv Rodríguez, Eduardo Rafael Llapa
dc.contributor.advisor1.fl_str_mv Saito, José Hiroki
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7065615446493390
dc.contributor.authorID.fl_str_mv 5c8eadc3-b393-4939-9052-b4e1623f8166
contributor_str_mv Saito, José Hiroki
dc.subject.por.fl_str_mv Matriz de microeletrodos
Sinais eletrofisiológicos
Culturas de neurônios in-vitro
ICA
Mapeamento topológico de neurônios
Análise quantitativa
Imagem
topic Matriz de microeletrodos
Sinais eletrofisiológicos
Culturas de neurônios in-vitro
ICA
Mapeamento topológico de neurônios
Análise quantitativa
Imagem
Microelectrode array
Eletrofisiological signals
In-vitro neuron culture
ICA
Topological neuron mapping
Quantitative analysis
Image
CIENCIAS EXATAS E DA TERRA
dc.subject.eng.fl_str_mv Microelectrode array
Eletrofisiological signals
In-vitro neuron culture
ICA
Topological neuron mapping
Quantitative analysis
Image
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA
description This thesis combines image and signal processing to obtain virtual neuron distribution maps in a Microelectrode Array (MEA), which are devices designed for non-invasive electrophysiological signal recording for in vitro cultures of neuron cells. In the electrophysiological signal analysis, it is of interest the knowledge of the topological distribution of the cells along the MEA microelectrodes, but, usually the photographic images of the cell culture are not available. This doctoral work presents an approach to obtain the statistical topologic distribution of the neurons of an in vitro cell culture, denoted virtual distribution of neurons, from the electrophysiological signals. To certify that the statistical computation of the neuron counting is associated to each MEA microelectrode, it is used the ICA (Independent component Analysis) technique, for the separation of the neuron signals distributed throughout the MEA area, to obtain for each microelectrode, only the signals from its adjacent neurons. Assuming the hypothesis that the spontaneous neuron activities, spikes and bursts, are directly proportional to the neuron counting, it is realized the spike counting and burst counting, and it is assigned for each microelectrode, a number of neurons proportional to that numbers of activities. For the validation of the proposal, as well as for calibration of the system, to obtain the estimated number of neurons, it was used an experiment denoted 371, realized in Genoa University, Italy, in which it was recorded electrophysiological signals in 46 DIVs (Days In- Vitro), obtaining 20 minutes of recording in 25, 29, 32, 36, 39, 43, and 46 DIVs, and a set of photographic images in 38 DIV. Assuming that microelectrode neuron counting in the 38 DIV photographic image is proportional to the 39 DIV spontaneous electrophysiological activity signal recording, one day after the imaging, if was determined the neuron counting as function of the spontaneous electrophysiological activities recording, in a process denoted as calibration of the virtual number of neurons. The distance error from the neuron activities as function of the neuron counting in photographic image and in function of the recorded electrophysiological signals was calculated and compared for validation. In this way, it was possible to construct virtual topologic maps of neurons, proportional to the electrophysiological activities measured in 39 DIV, as a function of the spike and the burst countings. Comparing these two virtual maps, the spike counting virtual map was more close to the real neuron distributions viewed at the photographic image of 38 DIV. Also, the variance of the spike and burst counting along the 20 min of electrophysiological recording in a DIV, was calculated, and noted that the spike counting is more stable than burst counting.
publishDate 2015
dc.date.issued.fl_str_mv 2015-12-15
dc.date.accessioned.fl_str_mv 2016-10-14T14:11:41Z
dc.date.available.fl_str_mv 2016-10-14T14:11:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RODRÍGUEZ, Eduardo Rafael Llapa. Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos. 2015. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7865.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7865
identifier_str_mv RODRÍGUEZ, Eduardo Rafael Llapa. Mapeamento topológico virtual de neurônios proporcional às atividades eletrofisiológicas em matrizes de microeletrodos. 2015. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7865.
url https://repositorio.ufscar.br/handle/ufscar/7865
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 51b9675e-5744-4345-98e1-2c5caead4a56
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/7865/1/TeseERLR.pdf
https://repositorio.ufscar.br/bitstream/ufscar/7865/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/7865/3/TeseERLR.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/7865/4/TeseERLR.pdf.jpg
bitstream.checksum.fl_str_mv 2fe540767de5ff5f23af02775508026b
ae0398b6f8b235e40ad82cba6c50031d
bf741d938ba6961950312badc3214951
9ed350c3434ea655e1a9e9aafa4fd65d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136521164193792