Combinação de classificadores baseados em floresta de caminhos ótimos
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/ufscar/9511 |
Resumo: | Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, among the several studies on classification techniques and how to improve them, the ensemble of classifiers has achieved considerable evidence in the literature. In this circumstance, a classifier with significant growth is the technique called Optimum-Path Forest (OPF), which is considerable ease to manipulate, has no parameters in some versions, and it is efficient in the training phase. Since OPF is a relatively new technique in the literature, and we have few studies on ensemble of OPF classifiers only, this work aims to provide a more detailed study in ensemble techniques regarding the OPF classifier. This work has proposed an improved version of OPF, which learns a score-based confidence level for each training sample in order to turn the classification process “smarter” (i.e., more reliable), which is further used in a combination process with majority voting. Furthermore, we also proposed the combination of classifiers using an ensemble pruning strategy driven by meta-heuristics based on quaternions. In addition, we proposed an extension of the ensemble pruning using OPF classifiers in the context of remote sensing images. Finally, the probabilistic OPF was proposed, since the OPF presents only abstract outputs. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approaches for classification problems. |
id |
SCAR_efc720cc8909e2a874239c5a769406d0 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/9511 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
|
spelling |
Fernandes, Silas Evandro NachifPapa, João Paulohttp://lattes.cnpq.br/9039182932747194http://lattes.cnpq.br/3584861614841162f15ee7dd-5d5e-4018-9473-4f49b3d567102018-03-05T18:03:26Z2018-03-05T18:03:26Z2017-08-31FERNANDES, Silas Evandro Nachif. Combinação de classificadores baseados em floresta de caminhos ótimos. 2017. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9511.https://repositorio.ufscar.br/handle/ufscar/9511Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, among the several studies on classification techniques and how to improve them, the ensemble of classifiers has achieved considerable evidence in the literature. In this circumstance, a classifier with significant growth is the technique called Optimum-Path Forest (OPF), which is considerable ease to manipulate, has no parameters in some versions, and it is efficient in the training phase. Since OPF is a relatively new technique in the literature, and we have few studies on ensemble of OPF classifiers only, this work aims to provide a more detailed study in ensemble techniques regarding the OPF classifier. This work has proposed an improved version of OPF, which learns a score-based confidence level for each training sample in order to turn the classification process “smarter” (i.e., more reliable), which is further used in a combination process with majority voting. Furthermore, we also proposed the combination of classifiers using an ensemble pruning strategy driven by meta-heuristics based on quaternions. In addition, we proposed an extension of the ensemble pruning using OPF classifiers in the context of remote sensing images. Finally, the probabilistic OPF was proposed, since the OPF presents only abstract outputs. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approaches for classification problems.Técnicas de aprendizado de máquina têm sido amplamente estudadas nos últimos anos, principalmente devido ao grande número de aplicações que usam algum mecanismo de inteligência para tomar decisões. Nesse contexto, dentre os diversos estudos sobre técnicas de classificação e como melhorá-las, o campo de combinação de classificadores tem ganhado evidência na literatura. Nessa circunstância, um classificador com destaque crescente na literatura é a técnica denominada de Floresta de Caminhos Ótimos (Optimum-Path Forest - OPF), a qual, devido à sua facilidade de utilização, ausência de parâmetros em algumas versões e eficiência na etapa de treinamento de dados, tem se mostrado uma abordagem interessante para problemas de classificação. Por ser uma técnica relativamente recente na literatura e apresentar poucos estudos sobre estratégias de combinação de classificadores, a presente tese visa apresentar um estudo sobre combinação com foco no classificador OPF. A destacar, o estudo com aprendizado dos níveis de confiança baseados em pontuações para o conjunto de treinamento, o qual tem por finalidade aprender amostras mais confiáveis para a etapa de classificação, sendo estas utilizadas em um processo de combinação de classificadores OPF com votação por maioria. Além desse estudo, foi proposta também a combinação de classificadores utilizando a poda de conjunto guiada por otimização meta-heurística baseada em quatérnions. Ademais, foi proposta uma extensão da poda de conjunto utilizando classificadores OPFs no contexto de imagens de sensoriamento remoto e, por fim, foi proposto o OPF probabilístico, visto que tradicionalmente o OPF apresenta saídas abstratas apenas. Testes empíricos sobre bases de dados reais e sintéticas evidenciaram que os estudos propostos neste trabalho alcançaram relevante eficácia e eficiência em diversos cenários.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 1262179porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarFloresta de caminhos ótimosCombinação de classificadoresReconhecimento de padrõesOptimum-path forestEnsemble classifiersPattern recognitionCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOCombinação de classificadores baseados em floresta de caminhos ótimosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fdinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9511/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53ORIGINALFERNANDES_Silas_2018.pdfFERNANDES_Silas_2018.pdfapplication/pdf8328470https://repositorio.ufscar.br/bitstream/ufscar/9511/4/FERNANDES_Silas_2018.pdf1049a9e8218d03879617a0ef49f94e89MD54TEXTFERNANDES_Silas_2018.pdf.txtFERNANDES_Silas_2018.pdf.txtExtracted texttext/plain244930https://repositorio.ufscar.br/bitstream/ufscar/9511/5/FERNANDES_Silas_2018.pdf.txt5e7f305bd737e62530b1cb0605a61307MD55THUMBNAILFERNANDES_Silas_2018.pdf.jpgFERNANDES_Silas_2018.pdf.jpgIM Thumbnailimage/jpeg8142https://repositorio.ufscar.br/bitstream/ufscar/9511/6/FERNANDES_Silas_2018.pdf.jpg3b785cd85cb9105072c020b023e6604dMD56ufscar/95112023-09-18 18:31:13.738oai:repositorio.ufscar.br:ufscar/9511TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:13Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Combinação de classificadores baseados em floresta de caminhos ótimos |
title |
Combinação de classificadores baseados em floresta de caminhos ótimos |
spellingShingle |
Combinação de classificadores baseados em floresta de caminhos ótimos Fernandes, Silas Evandro Nachif Floresta de caminhos ótimos Combinação de classificadores Reconhecimento de padrões Optimum-path forest Ensemble classifiers Pattern recognition CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
title_short |
Combinação de classificadores baseados em floresta de caminhos ótimos |
title_full |
Combinação de classificadores baseados em floresta de caminhos ótimos |
title_fullStr |
Combinação de classificadores baseados em floresta de caminhos ótimos |
title_full_unstemmed |
Combinação de classificadores baseados em floresta de caminhos ótimos |
title_sort |
Combinação de classificadores baseados em floresta de caminhos ótimos |
author |
Fernandes, Silas Evandro Nachif |
author_facet |
Fernandes, Silas Evandro Nachif |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/3584861614841162 |
dc.contributor.author.fl_str_mv |
Fernandes, Silas Evandro Nachif |
dc.contributor.advisor1.fl_str_mv |
Papa, João Paulo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9039182932747194 |
dc.contributor.authorID.fl_str_mv |
f15ee7dd-5d5e-4018-9473-4f49b3d56710 |
contributor_str_mv |
Papa, João Paulo |
dc.subject.por.fl_str_mv |
Floresta de caminhos ótimos Combinação de classificadores Reconhecimento de padrões |
topic |
Floresta de caminhos ótimos Combinação de classificadores Reconhecimento de padrões Optimum-path forest Ensemble classifiers Pattern recognition CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
dc.subject.eng.fl_str_mv |
Optimum-path forest Ensemble classifiers Pattern recognition |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
description |
Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, among the several studies on classification techniques and how to improve them, the ensemble of classifiers has achieved considerable evidence in the literature. In this circumstance, a classifier with significant growth is the technique called Optimum-Path Forest (OPF), which is considerable ease to manipulate, has no parameters in some versions, and it is efficient in the training phase. Since OPF is a relatively new technique in the literature, and we have few studies on ensemble of OPF classifiers only, this work aims to provide a more detailed study in ensemble techniques regarding the OPF classifier. This work has proposed an improved version of OPF, which learns a score-based confidence level for each training sample in order to turn the classification process “smarter” (i.e., more reliable), which is further used in a combination process with majority voting. Furthermore, we also proposed the combination of classifiers using an ensemble pruning strategy driven by meta-heuristics based on quaternions. In addition, we proposed an extension of the ensemble pruning using OPF classifiers in the context of remote sensing images. Finally, the probabilistic OPF was proposed, since the OPF presents only abstract outputs. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approaches for classification problems. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-08-31 |
dc.date.accessioned.fl_str_mv |
2018-03-05T18:03:26Z |
dc.date.available.fl_str_mv |
2018-03-05T18:03:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FERNANDES, Silas Evandro Nachif. Combinação de classificadores baseados em floresta de caminhos ótimos. 2017. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9511. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/9511 |
identifier_str_mv |
FERNANDES, Silas Evandro Nachif. Combinação de classificadores baseados em floresta de caminhos ótimos. 2017. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9511. |
url |
https://repositorio.ufscar.br/handle/ufscar/9511 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fd |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/9511/3/license.txt https://repositorio.ufscar.br/bitstream/ufscar/9511/4/FERNANDES_Silas_2018.pdf https://repositorio.ufscar.br/bitstream/ufscar/9511/5/FERNANDES_Silas_2018.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/9511/6/FERNANDES_Silas_2018.pdf.jpg |
bitstream.checksum.fl_str_mv |
ae0398b6f8b235e40ad82cba6c50031d 1049a9e8218d03879617a0ef49f94e89 5e7f305bd737e62530b1cb0605a61307 3b785cd85cb9105072c020b023e6604d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715913067724800 |