Ensaios em economia da educação com dados do PISA

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Pereira, Márcio Aurélio Frota
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/71904
Resumo: This thesis is composed of three essays with PISA data. The first, “Early Childhood and its Impact on Student Performance in PISA”, focuses on the discussion of early childhood education and its impacts on future performance. For this purpose, data from Brazil in PISA 2018 was used. were the Propensity Score Matching (PSM), the Quantile Treatment Effects (QTE), the Propensity Score Generalized (PSG) and the sensitivity analysis by Rosenbaum (2002). later or who did not enter, positively influences the performance in PISA. In a stratified way, these results remain, in part, between the medians or the best performances. When exposing students to different levels of education, heterogeneous effects were observed on the performance. The marginal return on performance increases with the increase in schooling in the initial years, that is, up to 2 years in mathematics and 3 years in science and reading. Sensitivity analysis de Rosenbaum (2002) indicated that the results are robust to unobservable variables. The second essay, “Do Empathy and Awareness of Bullying Affect PISA Performance?”, investigates how empathy and awareness of bullying impacts academic performance. For that, data from Brazil was used in the 2018 PISA and the technique used was Double/Debiased Machine Learning. Through the results, it was inferred that students who are more empathetic and/or aware of bullying present better performance in the three PISA competencies. These results are maintained even when making several cuts in the data, namely, by location size, by type of school (public or private) and by gender. The performance increase is more pronounced when comparing students who live in regions with more than 1 million inhabitants or who are girls. This accentuation varies between the types of schools, in which it is conditioned to the form of measurement and the type of skill considered. The results are robust, given that Oster's (2019) sensitivity analysis did not find problems with omission of variables. The third essay, “Unconditional Quantile Decomposition of Gender Performance Gaps”, focuses on the debate on inequality between boys and girls, comparing the differences in the performances of Brazilian students with those of the OECD in the 2018 PISA exams. distribution and decompose the grade, the methodology of Firpo, Lemieux and Fortin (2018) was used. From the difference in points of the performance distribution, it can be concluded that there is inequality in the three evaluated competences, regardless of the performance level. In general, boys perform better than girls in math and science, while girls perform better in reading. In addition, it was inferred that inequality is greater in Brazil in mathematics and science, regardless of performance, while in reading, inequality is greater in the OECD in the smallest (10th and 25th quantile), in the medians (50th quantile) and in the highest performances (quantile 90).
id UFC-7_23f68876b74738222add926c60f854f6
oai_identifier_str oai:repositorio.ufc.br:riufc/71904
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Ensaios em economia da educação com dados do PISADesempenho EducacionalPrimeira InfânciaHabilidades SocioemocionaisDesigualdade entre os GênerosThis thesis is composed of three essays with PISA data. The first, “Early Childhood and its Impact on Student Performance in PISA”, focuses on the discussion of early childhood education and its impacts on future performance. For this purpose, data from Brazil in PISA 2018 was used. were the Propensity Score Matching (PSM), the Quantile Treatment Effects (QTE), the Propensity Score Generalized (PSG) and the sensitivity analysis by Rosenbaum (2002). later or who did not enter, positively influences the performance in PISA. In a stratified way, these results remain, in part, between the medians or the best performances. When exposing students to different levels of education, heterogeneous effects were observed on the performance. The marginal return on performance increases with the increase in schooling in the initial years, that is, up to 2 years in mathematics and 3 years in science and reading. Sensitivity analysis de Rosenbaum (2002) indicated that the results are robust to unobservable variables. The second essay, “Do Empathy and Awareness of Bullying Affect PISA Performance?”, investigates how empathy and awareness of bullying impacts academic performance. For that, data from Brazil was used in the 2018 PISA and the technique used was Double/Debiased Machine Learning. Through the results, it was inferred that students who are more empathetic and/or aware of bullying present better performance in the three PISA competencies. These results are maintained even when making several cuts in the data, namely, by location size, by type of school (public or private) and by gender. The performance increase is more pronounced when comparing students who live in regions with more than 1 million inhabitants or who are girls. This accentuation varies between the types of schools, in which it is conditioned to the form of measurement and the type of skill considered. The results are robust, given that Oster's (2019) sensitivity analysis did not find problems with omission of variables. The third essay, “Unconditional Quantile Decomposition of Gender Performance Gaps”, focuses on the debate on inequality between boys and girls, comparing the differences in the performances of Brazilian students with those of the OECD in the 2018 PISA exams. distribution and decompose the grade, the methodology of Firpo, Lemieux and Fortin (2018) was used. From the difference in points of the performance distribution, it can be concluded that there is inequality in the three evaluated competences, regardless of the performance level. In general, boys perform better than girls in math and science, while girls perform better in reading. In addition, it was inferred that inequality is greater in Brazil in mathematics and science, regardless of performance, while in reading, inequality is greater in the OECD in the smallest (10th and 25th quantile), in the medians (50th quantile) and in the highest performances (quantile 90).A presente tese é composta por três ensaios com os dados do PISA. O primeiro, “Primeira Infância e seu Impacto sobre o Desempenho dos Alunos no PISA", foca na discussão da educação infantil e seus impactos no desempenho futuro. Para tanto, fez-se uso de dados do Brasil no PISA de 2018. As metodologias empregadas foram o Propensity Score Matching (PSM), o Quantile Treatment Effects (QTE), o Propensity Score Generalized (PSG) e a análise de sensibilidade de Rosenbaum (2002). A participação e a precocidade de entrada na educação infantil quando comparada aos que entraram mais tardiamente ou que não ingressaram, influencia positivamente o desempenho no PISA. De forma estratificada, esses resultados se mantêm, em partes, entre as medianas ou as melhores performances. Ao expor alunos a diferentes níveis de escolaridade, constatou-se efeitos heterogêneos sobre a performance. O retorno marginal do desempenho é crescente ao acréscimo de escolaridade nos anos iniciais, isso até 2 anos em matemática e 3 anos em ciências e em leitura. A análise de sensibilidade de Rosenbaum (2002) indicou que os resultados são robustos a variáveis não observáveis. O segundo ensaio, “A Empatia e a Conscientização sobre o Bullying afetam o Desempenho no PISA?”, investiga como a empatia e a conscientização em relação a questão do bullying, impactam sobre o desempenho acadêmico. Para tanto, utilizou-se dados do Brasil no PISA de 2018 e a técnica empregada foi a Double/Debiased Machine Learning. A partir dos resultados, inferiu-se que alunos mais empáticos e/ou conscientes sobre o bullying apresentam melhor performance nas três competências do PISA. Esses resultados se mantêm mesmo ao fazer diversos cortes nos dados, a saber, por tamanho da localidade, por tipo de escola (pública ou privada) e por gênero. O aumento de performance é mais acentuado ao comparar estudantes que residem em regiões com mais de 1 milhão de habitantes ou que sejam meninas. Essa acentuação varia entre os tipos de escolas, no qual, está condicionado à forma de mensuração e ao tipo de habilidade considerada. Os resultados são robustos, dado que a análise de sensibilidade de Oster (2019) não constatou problemas de omissão de variáveis. O terceiro ensaio, “Decomposição Quantílica Incondicional dos Diferenciais de Desempenho entre os Gêneros”, foca no debate sobre a desigualdade entre meninos e meninas, comparando as diferenças das performances de estudantes brasileiros com os da OCDE nos exames do PISA de 2018. Para analisar a distribuição e decompor a nota, utilizou-se a metodologia de Firpo, Lemieux e Fortin (2018). A partir da diferença em pontos da distribuição de desempenho, pode-se concluir que há desigualdade nas três competências avaliadas, independente do nível de performance. Em geral, o desempenho dos meninos é superior ao das meninas em matemática e em ciências, ao passo que, elas apresentam melhor desempenho em leitura. Além disso, inferiu-se que a desigualdade é maior no Brasil em matemática e em ciências, independente da performance, enquanto, em leitura, a desigualdade é maior na OCDE nas menores (10º e 25º quantil), nas medianas (quantil 50) e nas maiores performances (quantil 90).Arraes, Ronaldo de Albuquerque eIrffi, Guilherme DinizPereira, Márcio Aurélio Frota2023-04-26T19:05:20Z2023-04-26T19:05:20Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfPEREIRA, Márcio Aurélio Frota. Ensaios em economia da educação com dados do PISA. 2022. 211f. Tese (Doutorado em Economia) - Universidade Federal do Ceará, Fortaleza, 2022.http://www.repositorio.ufc.br/handle/riufc/71904porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-04-26T19:05:20Zoai:repositorio.ufc.br:riufc/71904Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-04-26T19:05:20Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Ensaios em economia da educação com dados do PISA
title Ensaios em economia da educação com dados do PISA
spellingShingle Ensaios em economia da educação com dados do PISA
Pereira, Márcio Aurélio Frota
Desempenho Educacional
Primeira Infância
Habilidades Socioemocionais
Desigualdade entre os Gêneros
title_short Ensaios em economia da educação com dados do PISA
title_full Ensaios em economia da educação com dados do PISA
title_fullStr Ensaios em economia da educação com dados do PISA
title_full_unstemmed Ensaios em economia da educação com dados do PISA
title_sort Ensaios em economia da educação com dados do PISA
author Pereira, Márcio Aurélio Frota
author_facet Pereira, Márcio Aurélio Frota
author_role author
dc.contributor.none.fl_str_mv Arraes, Ronaldo de Albuquerque e
Irffi, Guilherme Diniz
dc.contributor.author.fl_str_mv Pereira, Márcio Aurélio Frota
dc.subject.por.fl_str_mv Desempenho Educacional
Primeira Infância
Habilidades Socioemocionais
Desigualdade entre os Gêneros
topic Desempenho Educacional
Primeira Infância
Habilidades Socioemocionais
Desigualdade entre os Gêneros
description This thesis is composed of three essays with PISA data. The first, “Early Childhood and its Impact on Student Performance in PISA”, focuses on the discussion of early childhood education and its impacts on future performance. For this purpose, data from Brazil in PISA 2018 was used. were the Propensity Score Matching (PSM), the Quantile Treatment Effects (QTE), the Propensity Score Generalized (PSG) and the sensitivity analysis by Rosenbaum (2002). later or who did not enter, positively influences the performance in PISA. In a stratified way, these results remain, in part, between the medians or the best performances. When exposing students to different levels of education, heterogeneous effects were observed on the performance. The marginal return on performance increases with the increase in schooling in the initial years, that is, up to 2 years in mathematics and 3 years in science and reading. Sensitivity analysis de Rosenbaum (2002) indicated that the results are robust to unobservable variables. The second essay, “Do Empathy and Awareness of Bullying Affect PISA Performance?”, investigates how empathy and awareness of bullying impacts academic performance. For that, data from Brazil was used in the 2018 PISA and the technique used was Double/Debiased Machine Learning. Through the results, it was inferred that students who are more empathetic and/or aware of bullying present better performance in the three PISA competencies. These results are maintained even when making several cuts in the data, namely, by location size, by type of school (public or private) and by gender. The performance increase is more pronounced when comparing students who live in regions with more than 1 million inhabitants or who are girls. This accentuation varies between the types of schools, in which it is conditioned to the form of measurement and the type of skill considered. The results are robust, given that Oster's (2019) sensitivity analysis did not find problems with omission of variables. The third essay, “Unconditional Quantile Decomposition of Gender Performance Gaps”, focuses on the debate on inequality between boys and girls, comparing the differences in the performances of Brazilian students with those of the OECD in the 2018 PISA exams. distribution and decompose the grade, the methodology of Firpo, Lemieux and Fortin (2018) was used. From the difference in points of the performance distribution, it can be concluded that there is inequality in the three evaluated competences, regardless of the performance level. In general, boys perform better than girls in math and science, while girls perform better in reading. In addition, it was inferred that inequality is greater in Brazil in mathematics and science, regardless of performance, while in reading, inequality is greater in the OECD in the smallest (10th and 25th quantile), in the medians (50th quantile) and in the highest performances (quantile 90).
publishDate 2022
dc.date.none.fl_str_mv 2022
2023-04-26T19:05:20Z
2023-04-26T19:05:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PEREIRA, Márcio Aurélio Frota. Ensaios em economia da educação com dados do PISA. 2022. 211f. Tese (Doutorado em Economia) - Universidade Federal do Ceará, Fortaleza, 2022.
http://www.repositorio.ufc.br/handle/riufc/71904
identifier_str_mv PEREIRA, Márcio Aurélio Frota. Ensaios em economia da educação com dados do PISA. 2022. 211f. Tese (Doutorado em Economia) - Universidade Federal do Ceará, Fortaleza, 2022.
url http://www.repositorio.ufc.br/handle/riufc/71904
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1828141032494071808