Development of a Fatigue Estimation Model For Industrial Workers
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufes.br/handle/10/17395 |
Resumo: | Muscle fatigue (MF) reduces the ability to maintain maximal strength during voluntary contraction. During long working shifts, workers often experience muscle fatigue which in the long term can lead to the development of musculoskeletal disorders (MSD), which can significantly impact their ability to engage in repetitive tasks. MSDs represent a major health concern in physical labor, affecting individuals’ quality of life and the ability to perform daily activities and work-related tasks. Estimating and analyzing MF has broad applications in sports, medicine, and ergonomics. Specifically, in ergonomics, reducing local muscular workloads is essential for maintaining the health and productivity of workers. Manual lifting, a common practice in various work environments, can contribute to excessive MF, affecting occupational safety, well-being, and overall productivity. During fatigue, kinematic changes occur, altering muscle activity, joint kinematics, and postural control. Various techniques, both invasive and non-invasive, are used for estimating MF. Invasive methods, such as blood samples or muscle biopsies, provide post-activity information but lack real-time monitoring. Non-invasive methods, like surface electromyography (sEMG), and wearable devices, such as Inertial Measurement Units (IMUs) and Optical Fiber Sensors (OFS), offer alternative approaches to MF estimation. These wearable devices could be used for early detection and management of muscle fatigue, being able to monitor in real-time industrial tasks. Although EMG remains the gold standard for measuring muscle fatigue, its limitations, such as inaccurate readings in long-term work, motivate the use of alternative wearable devices. This master thesis proposes a computational model for estimating muscle fatigue using wearable and non-invasive devices like OFS and two IMUs (located at the wrist and neck) along the subjective Borg scale. EMG sensors are used to observe their importance in estimating muscle fatigue being used as a reference system and comparing performance in different sensor combinations. This sensor is located in the subject’s biceps brachii. Also, a validation of the OFS sensor before the tests is performed. This study involves 30 subjects performing a repetitive lifting activity until reaching muscle fatigue. Muscle activity, elbow angles, and angular and linear velocities are measured to extract multiple features. Some features included mean, standard deviation, RMS value, amplitude, frequency-related features, among others. Different machine learning algorithms obtain a model that estimates three fatigue states (low, moderate, and high) using 70% for training and 30% for testing. Results showed that between the machine learning classifiers, the Light Gradient Boosting Machine (LGBM) presented an accuracy of 96.2% in the classification task using all of the sensors with 33 features and 95.4% using only OFS and IMU sensors with 13 features. This demonstrates that elbow angles, wrist velocities, acceleration variations, and compensatory neck movements are essential for estimating muscle fatigue. In conclusion, the resulting model can be used to estimate fatigue during heavy lifting in work environments, having the potential to monitor and prevent muscle fatigue during long working shifts. |
id |
UFES_12f916135af292322ed7823e997019c8 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/17395 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
|
spelling |
Development of a Fatigue Estimation Model For Industrial Workerstitle.alternativeFadiga musculareletromiografiasensores inerciaissensores de fibra ópticaaprendizado de máquinasubject.br-rjbnÁrea(s) do conhecimento do documento (Tabela CNPq)Muscle fatigue (MF) reduces the ability to maintain maximal strength during voluntary contraction. During long working shifts, workers often experience muscle fatigue which in the long term can lead to the development of musculoskeletal disorders (MSD), which can significantly impact their ability to engage in repetitive tasks. MSDs represent a major health concern in physical labor, affecting individuals’ quality of life and the ability to perform daily activities and work-related tasks. Estimating and analyzing MF has broad applications in sports, medicine, and ergonomics. Specifically, in ergonomics, reducing local muscular workloads is essential for maintaining the health and productivity of workers. Manual lifting, a common practice in various work environments, can contribute to excessive MF, affecting occupational safety, well-being, and overall productivity. During fatigue, kinematic changes occur, altering muscle activity, joint kinematics, and postural control. Various techniques, both invasive and non-invasive, are used for estimating MF. Invasive methods, such as blood samples or muscle biopsies, provide post-activity information but lack real-time monitoring. Non-invasive methods, like surface electromyography (sEMG), and wearable devices, such as Inertial Measurement Units (IMUs) and Optical Fiber Sensors (OFS), offer alternative approaches to MF estimation. These wearable devices could be used for early detection and management of muscle fatigue, being able to monitor in real-time industrial tasks. Although EMG remains the gold standard for measuring muscle fatigue, its limitations, such as inaccurate readings in long-term work, motivate the use of alternative wearable devices. This master thesis proposes a computational model for estimating muscle fatigue using wearable and non-invasive devices like OFS and two IMUs (located at the wrist and neck) along the subjective Borg scale. EMG sensors are used to observe their importance in estimating muscle fatigue being used as a reference system and comparing performance in different sensor combinations. This sensor is located in the subject’s biceps brachii. Also, a validation of the OFS sensor before the tests is performed. This study involves 30 subjects performing a repetitive lifting activity until reaching muscle fatigue. Muscle activity, elbow angles, and angular and linear velocities are measured to extract multiple features. Some features included mean, standard deviation, RMS value, amplitude, frequency-related features, among others. Different machine learning algorithms obtain a model that estimates three fatigue states (low, moderate, and high) using 70% for training and 30% for testing. Results showed that between the machine learning classifiers, the Light Gradient Boosting Machine (LGBM) presented an accuracy of 96.2% in the classification task using all of the sensors with 33 features and 95.4% using only OFS and IMU sensors with 13 features. This demonstrates that elbow angles, wrist velocities, acceleration variations, and compensatory neck movements are essential for estimating muscle fatigue. In conclusion, the resulting model can be used to estimate fatigue during heavy lifting in work environments, having the potential to monitor and prevent muscle fatigue during long working shifts.A fadiga muscular (MF) é definida como uma capacidade reduzida de manter a força máxima durante a contração voluntária. Ela está associada a doenças musculoesqueléticas (MSD pelas siglas em inglês), que podem afetar significativamente a capacidade dos trabalhadores de se envolverem em tarefas repetitivas por períodos prolongados. As MSD’s podem representar um grande problema de saúde para os trabalhadores, visto que afetam a sua qualidade de vida e a capacidade de realizar atividades diárias e tarefas relacionadas ao trabalho. A estimativa e a análise da MF têm amplas aplicações nos esportes, na medicina e na ergonomia, sendo queue neste, a redução das cargas de trabalho muscular local é essencial para manter a saúde e a produtividade dos trabalhadores. O levantamento manual, uma prática comum em vários ambientes de trabalho, pode contribuir para o excesso de MF, afetando a segurança ocupacional, o bem-estar e a produtividade geral. Durante o estado de fadiga, ocorrem mudanças cinemáticas, alterando a atividade muscular, a cinemática das articulações e o controle postural. Várias técnicas, tanto invasivas quanto não invasivas, são usadas para estimar a MF. Os métodos invasivos, como amostras de sangue ou biópsias musculares, fornecem informações pós-atividade, mas não têm monitoramento em tempo real. Os métodos não invasivos, como a eletromiografia de superfície (sEMG), e os dispositivos vestíveis, como as unidades de medição inercial (IMU) e os sensores de fibra óptica (OFS), oferecem abordagens alternativas para a estimativa da MF. Embora a EMG continue sendo o padrão ouro para medir a fadiga muscular, suas limitações no trabalho de longo prazo motivam o uso de dispositivos vestíveis. Esta dissertação de mestrado propõe um modelo computacional para estimar a fadiga muscular usando dispositivos vestíveis e não invasivos, como OFS e IMUs, de acordo com a escala subjetiva de Borg. Os sensores EMG são usados para observar sua importância na estimativa da fadiga muscular e comparar o desempenho em diferentes combinações de sensores. Além disso, foi realizada uma validação do OFS antes dos testes. Este estudo envolve 30 indivíduos que realizam uma atividade repetitiva de levantamento com o braço dominante até atingir a fadiga muscular. Com o objetivo de se extrair diversos atributos, a atividade muscular, os ângulos do cotovelo e as velocidades angular e linear, são medidos, além de outras variáveis. Diferentes algoritmos de aprendizado de máquina obtêm um modelo que estima três estados de fadiga (baixa, moderada e alta). Os resultados mostraram que, entre os classificadores de aprendizado de máquina, o Light Gradient Boosting Machine (LGBM) apresentou uma precisão de 96,2% na tarefa de classificação usando todos os sensores com 33 atributos e 95,4% usando apenas os sensores OFS e IMU com 13 atributos. Isso demonstra que os ângulos do cotovelo, as velocidades do pulso, as variações de aceleração e os movimentos compensatórios do pescoço são essenciais para estimar a fadiga muscular. Concluindo, o modelo resultante pode ser usado para estimar a fadiga durante o levantamento de peso em ambientes de trabalho, tendo o potencial de monitorar e evitar a fadiga muscular durante longas jornadas.Universidade Federal do Espírito SantoBRMestrado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaSegatto, Marcelo Eduardo VieiraDíaz, Camilo Rodríguezhttps://orcid.org/0000-0001-9657-5076http://lattes.cnpq.br/2410092083336272Leal-Junior, Arnaldo GomesMicó-Amigo, Maria EncarnaGonzález, Sophia Otálora2024-06-19T12:28:42Z2024-06-19T12:28:42Z2024-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/17395porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-12-09T22:14:08Zoai:repositorio.ufes.br:10/17395Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-12-09T22:14:08Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Development of a Fatigue Estimation Model For Industrial Workers title.alternative |
title |
Development of a Fatigue Estimation Model For Industrial Workers |
spellingShingle |
Development of a Fatigue Estimation Model For Industrial Workers González, Sophia Otálora Fadiga muscular eletromiografia sensores inerciais sensores de fibra óptica aprendizado de máquina subject.br-rjbn Área(s) do conhecimento do documento (Tabela CNPq) |
title_short |
Development of a Fatigue Estimation Model For Industrial Workers |
title_full |
Development of a Fatigue Estimation Model For Industrial Workers |
title_fullStr |
Development of a Fatigue Estimation Model For Industrial Workers |
title_full_unstemmed |
Development of a Fatigue Estimation Model For Industrial Workers |
title_sort |
Development of a Fatigue Estimation Model For Industrial Workers |
author |
González, Sophia Otálora |
author_facet |
González, Sophia Otálora |
author_role |
author |
dc.contributor.none.fl_str_mv |
Segatto, Marcelo Eduardo Vieira Díaz, Camilo Rodríguez https://orcid.org/0000-0001-9657-5076 http://lattes.cnpq.br/2410092083336272 Leal-Junior, Arnaldo Gomes Micó-Amigo, Maria Encarna |
dc.contributor.author.fl_str_mv |
González, Sophia Otálora |
dc.subject.por.fl_str_mv |
Fadiga muscular eletromiografia sensores inerciais sensores de fibra óptica aprendizado de máquina subject.br-rjbn Área(s) do conhecimento do documento (Tabela CNPq) |
topic |
Fadiga muscular eletromiografia sensores inerciais sensores de fibra óptica aprendizado de máquina subject.br-rjbn Área(s) do conhecimento do documento (Tabela CNPq) |
description |
Muscle fatigue (MF) reduces the ability to maintain maximal strength during voluntary contraction. During long working shifts, workers often experience muscle fatigue which in the long term can lead to the development of musculoskeletal disorders (MSD), which can significantly impact their ability to engage in repetitive tasks. MSDs represent a major health concern in physical labor, affecting individuals’ quality of life and the ability to perform daily activities and work-related tasks. Estimating and analyzing MF has broad applications in sports, medicine, and ergonomics. Specifically, in ergonomics, reducing local muscular workloads is essential for maintaining the health and productivity of workers. Manual lifting, a common practice in various work environments, can contribute to excessive MF, affecting occupational safety, well-being, and overall productivity. During fatigue, kinematic changes occur, altering muscle activity, joint kinematics, and postural control. Various techniques, both invasive and non-invasive, are used for estimating MF. Invasive methods, such as blood samples or muscle biopsies, provide post-activity information but lack real-time monitoring. Non-invasive methods, like surface electromyography (sEMG), and wearable devices, such as Inertial Measurement Units (IMUs) and Optical Fiber Sensors (OFS), offer alternative approaches to MF estimation. These wearable devices could be used for early detection and management of muscle fatigue, being able to monitor in real-time industrial tasks. Although EMG remains the gold standard for measuring muscle fatigue, its limitations, such as inaccurate readings in long-term work, motivate the use of alternative wearable devices. This master thesis proposes a computational model for estimating muscle fatigue using wearable and non-invasive devices like OFS and two IMUs (located at the wrist and neck) along the subjective Borg scale. EMG sensors are used to observe their importance in estimating muscle fatigue being used as a reference system and comparing performance in different sensor combinations. This sensor is located in the subject’s biceps brachii. Also, a validation of the OFS sensor before the tests is performed. This study involves 30 subjects performing a repetitive lifting activity until reaching muscle fatigue. Muscle activity, elbow angles, and angular and linear velocities are measured to extract multiple features. Some features included mean, standard deviation, RMS value, amplitude, frequency-related features, among others. Different machine learning algorithms obtain a model that estimates three fatigue states (low, moderate, and high) using 70% for training and 30% for testing. Results showed that between the machine learning classifiers, the Light Gradient Boosting Machine (LGBM) presented an accuracy of 96.2% in the classification task using all of the sensors with 33 features and 95.4% using only OFS and IMU sensors with 13 features. This demonstrates that elbow angles, wrist velocities, acceleration variations, and compensatory neck movements are essential for estimating muscle fatigue. In conclusion, the resulting model can be used to estimate fatigue during heavy lifting in work environments, having the potential to monitor and prevent muscle fatigue during long working shifts. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06-19T12:28:42Z 2024-06-19T12:28:42Z 2024-03-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/17395 |
url |
http://repositorio.ufes.br/handle/10/17395 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1818368229136924672 |