Development of a Fatigue Estimation Model For Industrial Workers

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: González, Sophia Otálora
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/17395
Resumo: Muscle fatigue (MF) reduces the ability to maintain maximal strength during voluntary contraction. During long working shifts, workers often experience muscle fatigue which in the long term can lead to the development of musculoskeletal disorders (MSD), which can significantly impact their ability to engage in repetitive tasks. MSDs represent a major health concern in physical labor, affecting individuals’ quality of life and the ability to perform daily activities and work-related tasks. Estimating and analyzing MF has broad applications in sports, medicine, and ergonomics. Specifically, in ergonomics, reducing local muscular workloads is essential for maintaining the health and productivity of workers. Manual lifting, a common practice in various work environments, can contribute to excessive MF, affecting occupational safety, well-being, and overall productivity. During fatigue, kinematic changes occur, altering muscle activity, joint kinematics, and postural control. Various techniques, both invasive and non-invasive, are used for estimating MF. Invasive methods, such as blood samples or muscle biopsies, provide post-activity information but lack real-time monitoring. Non-invasive methods, like surface electromyography (sEMG), and wearable devices, such as Inertial Measurement Units (IMUs) and Optical Fiber Sensors (OFS), offer alternative approaches to MF estimation. These wearable devices could be used for early detection and management of muscle fatigue, being able to monitor in real-time industrial tasks. Although EMG remains the gold standard for measuring muscle fatigue, its limitations, such as inaccurate readings in long-term work, motivate the use of alternative wearable devices. This master thesis proposes a computational model for estimating muscle fatigue using wearable and non-invasive devices like OFS and two IMUs (located at the wrist and neck) along the subjective Borg scale. EMG sensors are used to observe their importance in estimating muscle fatigue being used as a reference system and comparing performance in different sensor combinations. This sensor is located in the subject’s biceps brachii. Also, a validation of the OFS sensor before the tests is performed. This study involves 30 subjects performing a repetitive lifting activity until reaching muscle fatigue. Muscle activity, elbow angles, and angular and linear velocities are measured to extract multiple features. Some features included mean, standard deviation, RMS value, amplitude, frequency-related features, among others. Different machine learning algorithms obtain a model that estimates three fatigue states (low, moderate, and high) using 70% for training and 30% for testing. Results showed that between the machine learning classifiers, the Light Gradient Boosting Machine (LGBM) presented an accuracy of 96.2% in the classification task using all of the sensors with 33 features and 95.4% using only OFS and IMU sensors with 13 features. This demonstrates that elbow angles, wrist velocities, acceleration variations, and compensatory neck movements are essential for estimating muscle fatigue. In conclusion, the resulting model can be used to estimate fatigue during heavy lifting in work environments, having the potential to monitor and prevent muscle fatigue during long working shifts.
id UFES_12f916135af292322ed7823e997019c8
oai_identifier_str oai:repositorio.ufes.br:10/17395
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling Development of a Fatigue Estimation Model For Industrial Workerstitle.alternativeFadiga musculareletromiografiasensores inerciaissensores de fibra ópticaaprendizado de máquinasubject.br-rjbnÁrea(s) do conhecimento do documento (Tabela CNPq)Muscle fatigue (MF) reduces the ability to maintain maximal strength during voluntary contraction. During long working shifts, workers often experience muscle fatigue which in the long term can lead to the development of musculoskeletal disorders (MSD), which can significantly impact their ability to engage in repetitive tasks. MSDs represent a major health concern in physical labor, affecting individuals’ quality of life and the ability to perform daily activities and work-related tasks. Estimating and analyzing MF has broad applications in sports, medicine, and ergonomics. Specifically, in ergonomics, reducing local muscular workloads is essential for maintaining the health and productivity of workers. Manual lifting, a common practice in various work environments, can contribute to excessive MF, affecting occupational safety, well-being, and overall productivity. During fatigue, kinematic changes occur, altering muscle activity, joint kinematics, and postural control. Various techniques, both invasive and non-invasive, are used for estimating MF. Invasive methods, such as blood samples or muscle biopsies, provide post-activity information but lack real-time monitoring. Non-invasive methods, like surface electromyography (sEMG), and wearable devices, such as Inertial Measurement Units (IMUs) and Optical Fiber Sensors (OFS), offer alternative approaches to MF estimation. These wearable devices could be used for early detection and management of muscle fatigue, being able to monitor in real-time industrial tasks. Although EMG remains the gold standard for measuring muscle fatigue, its limitations, such as inaccurate readings in long-term work, motivate the use of alternative wearable devices. This master thesis proposes a computational model for estimating muscle fatigue using wearable and non-invasive devices like OFS and two IMUs (located at the wrist and neck) along the subjective Borg scale. EMG sensors are used to observe their importance in estimating muscle fatigue being used as a reference system and comparing performance in different sensor combinations. This sensor is located in the subject’s biceps brachii. Also, a validation of the OFS sensor before the tests is performed. This study involves 30 subjects performing a repetitive lifting activity until reaching muscle fatigue. Muscle activity, elbow angles, and angular and linear velocities are measured to extract multiple features. Some features included mean, standard deviation, RMS value, amplitude, frequency-related features, among others. Different machine learning algorithms obtain a model that estimates three fatigue states (low, moderate, and high) using 70% for training and 30% for testing. Results showed that between the machine learning classifiers, the Light Gradient Boosting Machine (LGBM) presented an accuracy of 96.2% in the classification task using all of the sensors with 33 features and 95.4% using only OFS and IMU sensors with 13 features. This demonstrates that elbow angles, wrist velocities, acceleration variations, and compensatory neck movements are essential for estimating muscle fatigue. In conclusion, the resulting model can be used to estimate fatigue during heavy lifting in work environments, having the potential to monitor and prevent muscle fatigue during long working shifts.A fadiga muscular (MF) é definida como uma capacidade reduzida de manter a força máxima durante a contração voluntária. Ela está associada a doenças musculoesqueléticas (MSD pelas siglas em inglês), que podem afetar significativamente a capacidade dos trabalhadores de se envolverem em tarefas repetitivas por períodos prolongados. As MSD’s podem representar um grande problema de saúde para os trabalhadores, visto que afetam a sua qualidade de vida e a capacidade de realizar atividades diárias e tarefas relacionadas ao trabalho. A estimativa e a análise da MF têm amplas aplicações nos esportes, na medicina e na ergonomia, sendo queue neste, a redução das cargas de trabalho muscular local é essencial para manter a saúde e a produtividade dos trabalhadores. O levantamento manual, uma prática comum em vários ambientes de trabalho, pode contribuir para o excesso de MF, afetando a segurança ocupacional, o bem-estar e a produtividade geral. Durante o estado de fadiga, ocorrem mudanças cinemáticas, alterando a atividade muscular, a cinemática das articulações e o controle postural. Várias técnicas, tanto invasivas quanto não invasivas, são usadas para estimar a MF. Os métodos invasivos, como amostras de sangue ou biópsias musculares, fornecem informações pós-atividade, mas não têm monitoramento em tempo real. Os métodos não invasivos, como a eletromiografia de superfície (sEMG), e os dispositivos vestíveis, como as unidades de medição inercial (IMU) e os sensores de fibra óptica (OFS), oferecem abordagens alternativas para a estimativa da MF. Embora a EMG continue sendo o padrão ouro para medir a fadiga muscular, suas limitações no trabalho de longo prazo motivam o uso de dispositivos vestíveis. Esta dissertação de mestrado propõe um modelo computacional para estimar a fadiga muscular usando dispositivos vestíveis e não invasivos, como OFS e IMUs, de acordo com a escala subjetiva de Borg. Os sensores EMG são usados para observar sua importância na estimativa da fadiga muscular e comparar o desempenho em diferentes combinações de sensores. Além disso, foi realizada uma validação do OFS antes dos testes. Este estudo envolve 30 indivíduos que realizam uma atividade repetitiva de levantamento com o braço dominante até atingir a fadiga muscular. Com o objetivo de se extrair diversos atributos, a atividade muscular, os ângulos do cotovelo e as velocidades angular e linear, são medidos, além de outras variáveis. Diferentes algoritmos de aprendizado de máquina obtêm um modelo que estima três estados de fadiga (baixa, moderada e alta). Os resultados mostraram que, entre os classificadores de aprendizado de máquina, o Light Gradient Boosting Machine (LGBM) apresentou uma precisão de 96,2% na tarefa de classificação usando todos os sensores com 33 atributos e 95,4% usando apenas os sensores OFS e IMU com 13 atributos. Isso demonstra que os ângulos do cotovelo, as velocidades do pulso, as variações de aceleração e os movimentos compensatórios do pescoço são essenciais para estimar a fadiga muscular. Concluindo, o modelo resultante pode ser usado para estimar a fadiga durante o levantamento de peso em ambientes de trabalho, tendo o potencial de monitorar e evitar a fadiga muscular durante longas jornadas.Universidade Federal do Espírito SantoBRMestrado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaSegatto, Marcelo Eduardo VieiraDíaz, Camilo Rodríguezhttps://orcid.org/0000-0001-9657-5076http://lattes.cnpq.br/2410092083336272Leal-Junior, Arnaldo GomesMicó-Amigo, Maria EncarnaGonzález, Sophia Otálora2024-06-19T12:28:42Z2024-06-19T12:28:42Z2024-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/17395porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-12-09T22:14:08Zoai:repositorio.ufes.br:10/17395Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-12-09T22:14:08Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Development of a Fatigue Estimation Model For Industrial Workers
title.alternative
title Development of a Fatigue Estimation Model For Industrial Workers
spellingShingle Development of a Fatigue Estimation Model For Industrial Workers
González, Sophia Otálora
Fadiga muscular
eletromiografia
sensores inerciais
sensores de fibra óptica
aprendizado de máquina
subject.br-rjbn
Área(s) do conhecimento do documento (Tabela CNPq)
title_short Development of a Fatigue Estimation Model For Industrial Workers
title_full Development of a Fatigue Estimation Model For Industrial Workers
title_fullStr Development of a Fatigue Estimation Model For Industrial Workers
title_full_unstemmed Development of a Fatigue Estimation Model For Industrial Workers
title_sort Development of a Fatigue Estimation Model For Industrial Workers
author González, Sophia Otálora
author_facet González, Sophia Otálora
author_role author
dc.contributor.none.fl_str_mv Segatto, Marcelo Eduardo Vieira
Díaz, Camilo Rodríguez
https://orcid.org/0000-0001-9657-5076
http://lattes.cnpq.br/2410092083336272
Leal-Junior, Arnaldo Gomes
Micó-Amigo, Maria Encarna
dc.contributor.author.fl_str_mv González, Sophia Otálora
dc.subject.por.fl_str_mv Fadiga muscular
eletromiografia
sensores inerciais
sensores de fibra óptica
aprendizado de máquina
subject.br-rjbn
Área(s) do conhecimento do documento (Tabela CNPq)
topic Fadiga muscular
eletromiografia
sensores inerciais
sensores de fibra óptica
aprendizado de máquina
subject.br-rjbn
Área(s) do conhecimento do documento (Tabela CNPq)
description Muscle fatigue (MF) reduces the ability to maintain maximal strength during voluntary contraction. During long working shifts, workers often experience muscle fatigue which in the long term can lead to the development of musculoskeletal disorders (MSD), which can significantly impact their ability to engage in repetitive tasks. MSDs represent a major health concern in physical labor, affecting individuals’ quality of life and the ability to perform daily activities and work-related tasks. Estimating and analyzing MF has broad applications in sports, medicine, and ergonomics. Specifically, in ergonomics, reducing local muscular workloads is essential for maintaining the health and productivity of workers. Manual lifting, a common practice in various work environments, can contribute to excessive MF, affecting occupational safety, well-being, and overall productivity. During fatigue, kinematic changes occur, altering muscle activity, joint kinematics, and postural control. Various techniques, both invasive and non-invasive, are used for estimating MF. Invasive methods, such as blood samples or muscle biopsies, provide post-activity information but lack real-time monitoring. Non-invasive methods, like surface electromyography (sEMG), and wearable devices, such as Inertial Measurement Units (IMUs) and Optical Fiber Sensors (OFS), offer alternative approaches to MF estimation. These wearable devices could be used for early detection and management of muscle fatigue, being able to monitor in real-time industrial tasks. Although EMG remains the gold standard for measuring muscle fatigue, its limitations, such as inaccurate readings in long-term work, motivate the use of alternative wearable devices. This master thesis proposes a computational model for estimating muscle fatigue using wearable and non-invasive devices like OFS and two IMUs (located at the wrist and neck) along the subjective Borg scale. EMG sensors are used to observe their importance in estimating muscle fatigue being used as a reference system and comparing performance in different sensor combinations. This sensor is located in the subject’s biceps brachii. Also, a validation of the OFS sensor before the tests is performed. This study involves 30 subjects performing a repetitive lifting activity until reaching muscle fatigue. Muscle activity, elbow angles, and angular and linear velocities are measured to extract multiple features. Some features included mean, standard deviation, RMS value, amplitude, frequency-related features, among others. Different machine learning algorithms obtain a model that estimates three fatigue states (low, moderate, and high) using 70% for training and 30% for testing. Results showed that between the machine learning classifiers, the Light Gradient Boosting Machine (LGBM) presented an accuracy of 96.2% in the classification task using all of the sensors with 33 features and 95.4% using only OFS and IMU sensors with 13 features. This demonstrates that elbow angles, wrist velocities, acceleration variations, and compensatory neck movements are essential for estimating muscle fatigue. In conclusion, the resulting model can be used to estimate fatigue during heavy lifting in work environments, having the potential to monitor and prevent muscle fatigue during long working shifts.
publishDate 2024
dc.date.none.fl_str_mv 2024-06-19T12:28:42Z
2024-06-19T12:28:42Z
2024-03-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/17395
url http://repositorio.ufes.br/handle/10/17395
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1818368229136924672