Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Cavalcanti, Marcos Antônio Rocha
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Escola de Veterinária e Zootecnia - EVZ (RG)
Brasil
UFG
Programa de Pós-graduação em Ciência Animal (EVZ)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/3148
Resumo: O desenvolvimento de novas vacinas no controle de várias doenças na bovinocultura vem incrementando a comercialização de animais e produtos de origem animal. Com isso testaram-se duas vacinas, uma vacina bioterápica homeopática e outra vacina alopática recombinante, utilizando micobacterias em suas formulações que posteriormente foram testadas em camundongos e bovinos. Com o objetivo de estudar o efeito profilático da vacina homeopática e a potência a ser utilizada como vacina, foi empregado um modelo de imunizações e infecções. Para tal, utilizou-se camundongos fêmeas da linhagem BALB/c as quais foram distribuídas em 15 grupos com três animais cada. Para avaliar os possíveis mecanismos imunológicos envolvidos nas vacinações bioterápicas homeopáticas utilizou-se Mycobacterium massiliense. Os bioterápicos foram preparados a partir de micobactérias M. massiliense. Após as imunizações e infecções, os animais foram eutanaziados e deles colheram-se os fígados e baços, os quais foram macerados, homogeneizados, plaqueados e incubados a 37ºC durante 5 dias. Em seguida, fez-se a contagem de unidades formadoras de colônias (UFC) das bactérias recuperadas dos órgãos e de acordo com os resultados obtidos foram selecionadas as potências 11cH e 19cH para serem testadas como vacina, por apresentarem resultados mais homogêneos. Nos animais imunizados com 19 cH houve indução da produção de anticorpos da classe IgG2a específicos para M. massiliense semelhantes à (0,18 ± 0,07) infecção sozinha (0,19 ± 0,02). Para avaliar a proteção da vacina alopática, foi utilizada a micobactéria (Mycobacterium smegmatis mc2155 com PLA71/Fusão), em bovinos. Após as vacinações alopáticas foi coletado sangue e retirou-se o soro para o teste de ELISA. Animais que receberam a vacina viva recombinante expressando a proteína de fusão apresentaram níveis maiores de anticorpos específicos (p< 0,01). Com este estudo avaliou-se os efeitos da vacina bioterápica homeopática composta de M. massiliense e de vacina alopática formulada com M. smegmatis recombinante em diferentes modelos animais, concluindo assim que tanto as vacinas homeopáticas e vacinas alopáticas usando diferentes tipos de micobactérias podem induzir resposta imune humoral em modelo animal.
id UFG-2_cd463b2a817a2f8c2a2829ac263508ea
oai_identifier_str oai:null:tede/3148
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animaisEffect of vaccines and homeophatic Allopathic Mycobacterium spp front in different animal modelsAlopatiaHomeopatiaImunidade vacinalVacina recombinateAllopathyHomeopathyImmunity vaccineRecombinant vaccineMEDICINA VETERINARIA PREVENTIVA::SAUDE ANIMAL (PROGRAMAS SANITARIOS)O desenvolvimento de novas vacinas no controle de várias doenças na bovinocultura vem incrementando a comercialização de animais e produtos de origem animal. Com isso testaram-se duas vacinas, uma vacina bioterápica homeopática e outra vacina alopática recombinante, utilizando micobacterias em suas formulações que posteriormente foram testadas em camundongos e bovinos. Com o objetivo de estudar o efeito profilático da vacina homeopática e a potência a ser utilizada como vacina, foi empregado um modelo de imunizações e infecções. Para tal, utilizou-se camundongos fêmeas da linhagem BALB/c as quais foram distribuídas em 15 grupos com três animais cada. Para avaliar os possíveis mecanismos imunológicos envolvidos nas vacinações bioterápicas homeopáticas utilizou-se Mycobacterium massiliense. Os bioterápicos foram preparados a partir de micobactérias M. massiliense. Após as imunizações e infecções, os animais foram eutanaziados e deles colheram-se os fígados e baços, os quais foram macerados, homogeneizados, plaqueados e incubados a 37ºC durante 5 dias. Em seguida, fez-se a contagem de unidades formadoras de colônias (UFC) das bactérias recuperadas dos órgãos e de acordo com os resultados obtidos foram selecionadas as potências 11cH e 19cH para serem testadas como vacina, por apresentarem resultados mais homogêneos. Nos animais imunizados com 19 cH houve indução da produção de anticorpos da classe IgG2a específicos para M. massiliense semelhantes à (0,18 ± 0,07) infecção sozinha (0,19 ± 0,02). Para avaliar a proteção da vacina alopática, foi utilizada a micobactéria (Mycobacterium smegmatis mc2155 com PLA71/Fusão), em bovinos. Após as vacinações alopáticas foi coletado sangue e retirou-se o soro para o teste de ELISA. Animais que receberam a vacina viva recombinante expressando a proteína de fusão apresentaram níveis maiores de anticorpos específicos (p< 0,01). Com este estudo avaliou-se os efeitos da vacina bioterápica homeopática composta de M. massiliense e de vacina alopática formulada com M. smegmatis recombinante em diferentes modelos animais, concluindo assim que tanto as vacinas homeopáticas e vacinas alopáticas usando diferentes tipos de micobactérias podem induzir resposta imune humoral em modelo animal.The development of new vaccines in the control of various diseases in cattle has been increasing the marketing of animals and animal products. Thus we tested two vaccines, a biotherapy homeopathicvaccine and other recombinantallopathic vaccine,using mycobacteria in their formulations that were subsequently tested in mice and cattle. In order to study the prophylactic effect of homeopathic vaccine and the potency to be used as a vaccine, we used a model of immunizations and infections. To this end, we used mice female of BALB / c lineage which were distributed in 15 groups of three animals each. To assess the possible immune mechanisms involved in homeopathic biotherapy vaccinations we used Mycobacterium massiliense. The biotherapics were prepared from mycobacterial M. massiliense. After infections and immunizations, the animals were euthanized and their livers and spleens were harvested, macerated, homogenized, plated and incubated at 37 ° C for five days. Then we did the counting of colony forming units (CFU) of bacteria recovered from organs and according to the results obtained were selected the potencies11cH and 19cH to be tested as vaccine, because they have shown more homogeneous results. In the animals that were immunized with 19 cHthere were induction of IgG2a class antibodies specific to M. massiliense similar to (0.18 ± 0.07) infections alone (0.19 ± .02). To assess allopathic vaccine protection was used mycobacterium (Mycobacterium smegmatis mc2155 with PLA71/Fusion) in cattle. After allopathic vaccinations, blood was collected and serum was removed for ELISA test. Animals that received the recombinant live vaccine expressing protein of fusion showed greater levels of specific antibodies (p <0.01). This study evaluated the effect ofhomeopathic biotherapy vaccine composed of M. massiliense and allopathicvaccine formulated with M.smegmatis recombinant in different animal models, thus concluding that both vaccines and vaccines homeopathic and allopathic using different kinds of mycobacteria can induce humoral immune response in an animal model.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESUniversidade Federal de GoiásEscola de Veterinária e Zootecnia - EVZ (RG)BrasilUFGPrograma de Pós-graduação em Ciência Animal (EVZ)Junqueira-Kipnis, Ana Paulahttp://lattes.cnpq.br/1252262903952987Nunes, Romão da CunhaRezende, Cintia Silva Minafra eJunqueira-Kipnis, Ana PaulaAlves Jr, José Roberto FerreiraResi, Michelle Guerreiro dosFioravanti, Maria Clorinda SoaresMartins, Márcio Eduardo PereiraCavalcanti, Marcos Antônio Rocha2014-09-23T20:48:47Z2013-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfCAVALCANTI, Marcos Antônio Rocha. Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais. 2013. 74 f. Tese (Doutorado em Ciência Animal) - Universidade Federal de Goiás, Goiânia, 2013.http://repositorio.bc.ufg.br/tede/handle/tede/3148ark:/38995/001300000v7nqporAlmeida, C.M.C.; Júnior Vasconcelos, A.C.; Kipnis, A.; Andrade, A.L.; Junqueira- Kipnis, A.P. Humoral Immune Response of Tuberculosis Patients in Brazil Indicate Recognition of Mycobacterium tuberculosis MPT-51 and GlcB. Clin Vac Immunol. 2008 15 (3): 579- 581. Ameni, G.; Vordermeier, M.; Aseffa, A.; Young, D.B.; Hewinson, R.G. Field evaluation of the efficacy of Mycobacterium bovis bacillus Calmette–Guerin against bovine tuberculosis in neonatal calves in Ethiopia. Clin Vaccine Immunol. 2010 17(10): 1533– 1538. Andersen, P.; Doherty, T.M. The success and failure of BCG — implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 2005 3: 656–662 Anon. Bovine tuberculosis errradications: uniform methods and rules. United States Departament of Agriculture, Animal and Plant Health Inspection Service, Washington, 2004. Backus, K.M.; Boshoff, H.I.; Barry, C.S.; Boutureira, O.; Patel, M.K. Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nat. Chem. Biol. 2011 7: 228. Black, G.F.; Weir, R.E.; Floyd, S.; Bliss, L.; Warndorff, D.K.; Crampin, A.C.; Ngwira, B.; Sichali, L.; Nazareth, B.; Blackwell, J.M.; Branson, K.; Chaguluka, S.D.; Donovan, L.; Jarman, E.; King, E.; Fine, P.E.M.; Dockrell, H.M. BCG-induced increase in interferon gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet. 2002 359: 1393-1401. Brandt, L.; Cunha, J.F.; Olsen, A.W.; Chilima, B.; Hirsch, P.; Appelberg, R.; Andersen, P. Failure of the Mycobacterium bovis BCG Vaccine: Some Species of Environmental Mycobacteria Block Multiplication of BCG and Induction of Protective Immunity to Tuberculosis. Inf. Immun. 2002 70 (2) 672: 678. Buddle, B.M.; Wards, B.J.; Aldwell, F.E.; Collins, D.M.; De Lisle, G.W. Influence of sensitisation to environmental mycobacteria on subsequent vaccination against bovine tuberculosis. Vaccine. 2002 20: 1126–1133. Buddle, B.M.; Wedlock, D.N.; Parlane, N.A.; Corner, L.A.; De Lisle, G.W.; Skinner, M.A. Revaccination of neonatal calves with Mycobacterium bovis BCG reduces the level of protection against bovine tuberculosis induced by a single vaccination. Infect Immun. 2003 71: 6411- 6419. 51 Buddle, B.M.; Denis, M.; Aldwell, F.E.; Vordermeier, H.M.; Hewinson, R.G.; Wedlock, D.N. Vaccination of cattle with Mycobacterium bovis BCG by a combination of systemic and oral routes. Tuberculosis. 2008 88: 595– 600. Buddle, B.M.; Aldwell, F.E.; De Lisle, G.W.; Vordermeier, H.M.; Hewinson, R.G.; Wedlock, D.N. Low oral BCG doses fail to protect cattle against an experimental challenge with Mycobacterium bovis. Tuberculosis. 2011 91: 400–405. Cooper, A. Cell mediate immune responses in tuberculosis. Annu. Rev. Immunol. 2009 27: 393–422. De Lisle, G.W.; Wards, B.J.; Buddle, B.M.; Collins, D.M. The efficacy of live tuberculosis vaccines after presensitization with Mycobacterium avium. Tuberculosis. 2005 85: 73–79. Fine, P.E. The BCG story: lessons from the past and implications for the future. Rev. Inf. Dis. 1989 11 (2): 353– 359. Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protocols. 2008 doi: 10.1101/pdb.prot4986. Geissmann, F.; Manz, M.G.; Jung, S.; Sieweke, M.H.; Merad, M.; Ley, K. Development of monocytes, macrophages, and dendritic cells. Science. 2010 327: 656–661. Gicquel, B. Towards new mycobacterial vaccines. Dev. Bio. Stand. 1994 82: 171–178. Hernandez- Pando, R.; Jeyanathan, M.; Mengistu, G.; Aguilar, D.; Orozco, H.; Harboe, M.; Rook, G.A.; Bjune, G. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet. 2000 356: 2133–2138. Hope, J.C.; Thom, M.L.; Mc Aulay, M.; Mead, E.; Vordermeier, H.M.; Clifford, D.; Hewinson, R. G.; Villarreal- Ramos, B. Identification of surrogates and correlates of protection in protective immunity against Mycobacterium bovis infection induced in neonatal calves by vaccination with M. bovis BCG Pasteur and M. bovis BCG Danish. Clin Vaccine Immunol. 2011 18: 373–379. Kauffman, S.H.E.; Ottenhoff, T.H.M. Tuberculosis vaccine development: strength lies in tenacity. Trends in Immunol. 2012 33 (7); 373- 379. Ladel, C.H.; Daugelat, S.; Kaufmann, S.H. Immune response to Mycobacterium bovis bacille Calmette Guerin infection in major histocompatibility complex class I- and II-deficient knock-out mice: contribution of CD4 and CD8 T cells to acquired resistance. Eur J Immunol. 1995 25: 377–384 52 Lopez- Valencia, G; Renteria- Evangelista, T.; Williams, J.J.; Licea- Navarro, A.; Mora-Valle, A.L.; Medina- Basuto, G. Field evaluation of the protective efficacy of Mycobacterium bovis BCG vaccine against bovine tuberculosis. Res Vet Sci. 2010 88: 44– 49. Orme I.M.; Roberts, A.R.; Collins, F.M. Lack of evidence for a reduction in the efficacy of subcutaneous BCG vaccination in mice infected with nontuberculous mycobacteria. Tubercle. 1986 167: 41– 46. Orme, I.M.; Miller, E.S.; Roberts, A.D.; Furney, S. K.; Griffin, J.P.; Dobos, K.M.; Chi, D.; Rivoire, B.; Brennan, P.J. T lymphocytes mediating protection and cellular cytolysis during the course of Mycobacterium tuberculosis infection. Evidence for different kinetics and recognition of a wide spectrum of protein antigens. J. Immunol. 1992 148: 189-196. Ottenhoff, T.H.M.; Verreck, F.A.; Lichtenauer- Kaligis, E.G.; Hoeve, M.A.; Sanal, O.; Van Dissel, J.T. Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nat Genet. 2002 32: 97–105. Ottenhoff, T.H.M; Lewinsohn, D.A.; Lewinsohn, D.M. Human CD4 and CD8 T cell responses to Mycobacterium tuberculosis: antigen specificity, function, implications and applications, p 119–156. In: Wiley-VCH Verlag GmbH & Co.KGaA (Eds), Handbook of tuberculosis, 2008. Immunology and cell biology, Weinheim. Ottenhoff T.H.M. New pathways of protective and pathological host defense to micobactéria. Trends in Microb. 2012 20 (9): 419- 428 Reyes Perez, A. Modification of the fite-faraco technique for the staining of acid-alcohol fast bacilli in histologic sections. Rev Latinoam Anat Patol. 1963 7: 81- 85. Rizzi, C.; Bianco, M.V.; Bianco, F.C.; Soria, M.; Gravisaco, M.J.; Montenegro, V.; Vagnoni, L.; Garbaccio, S.; Delgado, F.; Leal, K.S.; Cataldi, A.A.; Dellagostin, O.A.; Bigi, F. Vaccination with a BCG strain overexpressing Ag85B protects cattle against Mycobacterium bovis challenge. Plos One. 2012 7 (12): e51396. doi:10.1371/journal.pone.0051396. Schuurhuis, D.H.; Van, M.N.; Ioan- Facsinay, A.; Jiawan, R.; Camps, M.; Nouta, J.; Melief, C.J.; Verbeek, J.S.; Ossendorp, F. Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine. J Immunol. 2006 176: 4573–4580. Silva, B.D.S.; Silva, E.B.; Nascimento, I.P.; Reis, M.C.G.; Kipnis, A.; Junqueira- Kipnis, A.P. MPT- 51/ CpG DNA vaccine protects mice against Mycobacterium tuberculosis. Vaccine. 2009 27: 4402- 4407. 53 Silva, E.B; Silva, B.D.S.; Leon, J.R.R.; Kipnis, A.; Santos, I.K.F.M.; Junqueira- Kipnis, A.P. Using BCG, MPT- 51 and Ag85 as antigens in an indirect ELISA for the diagnosis of bovine tuberculosis. The Vet J. 2011 187: 276- 278. Sousa, E.M.; Costa, A.C.; Trentini, M.M.; Filho, J.A.A.; Kipnis, A.; Junqueira- Kipnis, A. P. Immunogenicity of a fusion protein containing immunodominant epitopes of Ag85C, MPT51, and HspX from Mycobacterium tuberculosisin mice and active TB infection. Plos One. 2012 7 (10) e47781 doi: 10.1371/journal.pone.0047781. Spratt, J.M.; Britton, W.J.; Triccas, J.A. In vivo persistence and protective efficacy of the bacille Calmette Guerin vaccine overexpressing the HspX latency antigen. Bioengineered Bugs. 2010 1 (1): 61-65 Sweeney, K.A.; Dao, D.N; Goldberg, M.F.; Hsu, T.; Venkataswamy, M.M.; Tamayo, M.H.; Ordway, D.; Sellers, R.S.; Jain, P.; Chen, B.; Chen, M.; Kim, J.; Lukose, R.; Chan, J.; Orme, I.M.; Porcelli, S.A.; Jacobs, W.R. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat. Med. 2011 7 (10): 1261-1268. Vordermeier, M.; Gordon, S. V.; Hewinson, R. G. Mycobacterium bovis antigens for the differential diagnosis of vaccinated and infected cattle. Vet Microbiol. 2011 151: 8-13 Waters, W.R.; Palmer, M.V.; Buddle, B.M.; Vordermeier, H.M. Bovine tuberculosis vaccine research: historical perspectives and recent advances. Vaccine. 2012 30 (16): 2611- 2622. Wedlock, D.N.; Denis, M.; Vordermeier, H.M.; Hewinson, R.G.; Buddle, B.M. Vaccination of cattle with Danish and Pasteur strains of Mycobacterium bovis BCG induce different levels of IFNgamma post-vaccination, but induce similar levels of protection against bovine tuberculosis. Vet Immunol Immunopathol. 2007 118: 50– 58. World Health Organization. WHO Report 2009: Global Tuberculosis Control: Surveillance, Planning, Financing. Geneva. World Health Organization; 2009. Zhang, H.; Peng, P.; Miao, S.; Zhao, Y.; Mao, F.; Wang, L.; Bai, Y.; Xu, Z.; Wei, S.; Shi, C. Recombinant Mycobacterium smegmatis expressing an ESAT6-CFP10 fusion protein induces anti- mycobacterial immune responses and protects against Mycobacterium tuberculosis challenge in mice. Scand. J. Immunol. 2010 72: 349-357.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFG2018-07-17T14:59:03Zoai:null:tede/3148Repositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342018-07-17T14:59:03Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)false
dc.title.none.fl_str_mv Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais
Effect of vaccines and homeophatic Allopathic Mycobacterium spp front in different animal models
title Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais
spellingShingle Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais
Cavalcanti, Marcos Antônio Rocha
Alopatia
Homeopatia
Imunidade vacinal
Vacina recombinate
Allopathy
Homeopathy
Immunity vaccine
Recombinant vaccine
MEDICINA VETERINARIA PREVENTIVA::SAUDE ANIMAL (PROGRAMAS SANITARIOS)
title_short Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais
title_full Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais
title_fullStr Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais
title_full_unstemmed Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais
title_sort Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais
author Cavalcanti, Marcos Antônio Rocha
author_facet Cavalcanti, Marcos Antônio Rocha
author_role author
dc.contributor.none.fl_str_mv Junqueira-Kipnis, Ana Paula
http://lattes.cnpq.br/1252262903952987
Nunes, Romão da Cunha
Rezende, Cintia Silva Minafra e
Junqueira-Kipnis, Ana Paula
Alves Jr, José Roberto Ferreira
Resi, Michelle Guerreiro dos
Fioravanti, Maria Clorinda Soares
Martins, Márcio Eduardo Pereira
dc.contributor.author.fl_str_mv Cavalcanti, Marcos Antônio Rocha
dc.subject.por.fl_str_mv Alopatia
Homeopatia
Imunidade vacinal
Vacina recombinate
Allopathy
Homeopathy
Immunity vaccine
Recombinant vaccine
MEDICINA VETERINARIA PREVENTIVA::SAUDE ANIMAL (PROGRAMAS SANITARIOS)
topic Alopatia
Homeopatia
Imunidade vacinal
Vacina recombinate
Allopathy
Homeopathy
Immunity vaccine
Recombinant vaccine
MEDICINA VETERINARIA PREVENTIVA::SAUDE ANIMAL (PROGRAMAS SANITARIOS)
description O desenvolvimento de novas vacinas no controle de várias doenças na bovinocultura vem incrementando a comercialização de animais e produtos de origem animal. Com isso testaram-se duas vacinas, uma vacina bioterápica homeopática e outra vacina alopática recombinante, utilizando micobacterias em suas formulações que posteriormente foram testadas em camundongos e bovinos. Com o objetivo de estudar o efeito profilático da vacina homeopática e a potência a ser utilizada como vacina, foi empregado um modelo de imunizações e infecções. Para tal, utilizou-se camundongos fêmeas da linhagem BALB/c as quais foram distribuídas em 15 grupos com três animais cada. Para avaliar os possíveis mecanismos imunológicos envolvidos nas vacinações bioterápicas homeopáticas utilizou-se Mycobacterium massiliense. Os bioterápicos foram preparados a partir de micobactérias M. massiliense. Após as imunizações e infecções, os animais foram eutanaziados e deles colheram-se os fígados e baços, os quais foram macerados, homogeneizados, plaqueados e incubados a 37ºC durante 5 dias. Em seguida, fez-se a contagem de unidades formadoras de colônias (UFC) das bactérias recuperadas dos órgãos e de acordo com os resultados obtidos foram selecionadas as potências 11cH e 19cH para serem testadas como vacina, por apresentarem resultados mais homogêneos. Nos animais imunizados com 19 cH houve indução da produção de anticorpos da classe IgG2a específicos para M. massiliense semelhantes à (0,18 ± 0,07) infecção sozinha (0,19 ± 0,02). Para avaliar a proteção da vacina alopática, foi utilizada a micobactéria (Mycobacterium smegmatis mc2155 com PLA71/Fusão), em bovinos. Após as vacinações alopáticas foi coletado sangue e retirou-se o soro para o teste de ELISA. Animais que receberam a vacina viva recombinante expressando a proteína de fusão apresentaram níveis maiores de anticorpos específicos (p< 0,01). Com este estudo avaliou-se os efeitos da vacina bioterápica homeopática composta de M. massiliense e de vacina alopática formulada com M. smegmatis recombinante em diferentes modelos animais, concluindo assim que tanto as vacinas homeopáticas e vacinas alopáticas usando diferentes tipos de micobactérias podem induzir resposta imune humoral em modelo animal.
publishDate 2013
dc.date.none.fl_str_mv 2013-03-26
2014-09-23T20:48:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CAVALCANTI, Marcos Antônio Rocha. Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais. 2013. 74 f. Tese (Doutorado em Ciência Animal) - Universidade Federal de Goiás, Goiânia, 2013.
http://repositorio.bc.ufg.br/tede/handle/tede/3148
dc.identifier.dark.fl_str_mv ark:/38995/001300000v7nq
identifier_str_mv CAVALCANTI, Marcos Antônio Rocha. Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais. 2013. 74 f. Tese (Doutorado em Ciência Animal) - Universidade Federal de Goiás, Goiânia, 2013.
ark:/38995/001300000v7nq
url http://repositorio.bc.ufg.br/tede/handle/tede/3148
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Almeida, C.M.C.; Júnior Vasconcelos, A.C.; Kipnis, A.; Andrade, A.L.; Junqueira- Kipnis, A.P. Humoral Immune Response of Tuberculosis Patients in Brazil Indicate Recognition of Mycobacterium tuberculosis MPT-51 and GlcB. Clin Vac Immunol. 2008 15 (3): 579- 581. Ameni, G.; Vordermeier, M.; Aseffa, A.; Young, D.B.; Hewinson, R.G. Field evaluation of the efficacy of Mycobacterium bovis bacillus Calmette–Guerin against bovine tuberculosis in neonatal calves in Ethiopia. Clin Vaccine Immunol. 2010 17(10): 1533– 1538. Andersen, P.; Doherty, T.M. The success and failure of BCG — implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 2005 3: 656–662 Anon. Bovine tuberculosis errradications: uniform methods and rules. United States Departament of Agriculture, Animal and Plant Health Inspection Service, Washington, 2004. Backus, K.M.; Boshoff, H.I.; Barry, C.S.; Boutureira, O.; Patel, M.K. Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nat. Chem. Biol. 2011 7: 228. Black, G.F.; Weir, R.E.; Floyd, S.; Bliss, L.; Warndorff, D.K.; Crampin, A.C.; Ngwira, B.; Sichali, L.; Nazareth, B.; Blackwell, J.M.; Branson, K.; Chaguluka, S.D.; Donovan, L.; Jarman, E.; King, E.; Fine, P.E.M.; Dockrell, H.M. BCG-induced increase in interferon gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet. 2002 359: 1393-1401. Brandt, L.; Cunha, J.F.; Olsen, A.W.; Chilima, B.; Hirsch, P.; Appelberg, R.; Andersen, P. Failure of the Mycobacterium bovis BCG Vaccine: Some Species of Environmental Mycobacteria Block Multiplication of BCG and Induction of Protective Immunity to Tuberculosis. Inf. Immun. 2002 70 (2) 672: 678. Buddle, B.M.; Wards, B.J.; Aldwell, F.E.; Collins, D.M.; De Lisle, G.W. Influence of sensitisation to environmental mycobacteria on subsequent vaccination against bovine tuberculosis. Vaccine. 2002 20: 1126–1133. Buddle, B.M.; Wedlock, D.N.; Parlane, N.A.; Corner, L.A.; De Lisle, G.W.; Skinner, M.A. Revaccination of neonatal calves with Mycobacterium bovis BCG reduces the level of protection against bovine tuberculosis induced by a single vaccination. Infect Immun. 2003 71: 6411- 6419. 51 Buddle, B.M.; Denis, M.; Aldwell, F.E.; Vordermeier, H.M.; Hewinson, R.G.; Wedlock, D.N. Vaccination of cattle with Mycobacterium bovis BCG by a combination of systemic and oral routes. Tuberculosis. 2008 88: 595– 600. Buddle, B.M.; Aldwell, F.E.; De Lisle, G.W.; Vordermeier, H.M.; Hewinson, R.G.; Wedlock, D.N. Low oral BCG doses fail to protect cattle against an experimental challenge with Mycobacterium bovis. Tuberculosis. 2011 91: 400–405. Cooper, A. Cell mediate immune responses in tuberculosis. Annu. Rev. Immunol. 2009 27: 393–422. De Lisle, G.W.; Wards, B.J.; Buddle, B.M.; Collins, D.M. The efficacy of live tuberculosis vaccines after presensitization with Mycobacterium avium. Tuberculosis. 2005 85: 73–79. Fine, P.E. The BCG story: lessons from the past and implications for the future. Rev. Inf. Dis. 1989 11 (2): 353– 359. Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protocols. 2008 doi: 10.1101/pdb.prot4986. Geissmann, F.; Manz, M.G.; Jung, S.; Sieweke, M.H.; Merad, M.; Ley, K. Development of monocytes, macrophages, and dendritic cells. Science. 2010 327: 656–661. Gicquel, B. Towards new mycobacterial vaccines. Dev. Bio. Stand. 1994 82: 171–178. Hernandez- Pando, R.; Jeyanathan, M.; Mengistu, G.; Aguilar, D.; Orozco, H.; Harboe, M.; Rook, G.A.; Bjune, G. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet. 2000 356: 2133–2138. Hope, J.C.; Thom, M.L.; Mc Aulay, M.; Mead, E.; Vordermeier, H.M.; Clifford, D.; Hewinson, R. G.; Villarreal- Ramos, B. Identification of surrogates and correlates of protection in protective immunity against Mycobacterium bovis infection induced in neonatal calves by vaccination with M. bovis BCG Pasteur and M. bovis BCG Danish. Clin Vaccine Immunol. 2011 18: 373–379. Kauffman, S.H.E.; Ottenhoff, T.H.M. Tuberculosis vaccine development: strength lies in tenacity. Trends in Immunol. 2012 33 (7); 373- 379. Ladel, C.H.; Daugelat, S.; Kaufmann, S.H. Immune response to Mycobacterium bovis bacille Calmette Guerin infection in major histocompatibility complex class I- and II-deficient knock-out mice: contribution of CD4 and CD8 T cells to acquired resistance. Eur J Immunol. 1995 25: 377–384 52 Lopez- Valencia, G; Renteria- Evangelista, T.; Williams, J.J.; Licea- Navarro, A.; Mora-Valle, A.L.; Medina- Basuto, G. Field evaluation of the protective efficacy of Mycobacterium bovis BCG vaccine against bovine tuberculosis. Res Vet Sci. 2010 88: 44– 49. Orme I.M.; Roberts, A.R.; Collins, F.M. Lack of evidence for a reduction in the efficacy of subcutaneous BCG vaccination in mice infected with nontuberculous mycobacteria. Tubercle. 1986 167: 41– 46. Orme, I.M.; Miller, E.S.; Roberts, A.D.; Furney, S. K.; Griffin, J.P.; Dobos, K.M.; Chi, D.; Rivoire, B.; Brennan, P.J. T lymphocytes mediating protection and cellular cytolysis during the course of Mycobacterium tuberculosis infection. Evidence for different kinetics and recognition of a wide spectrum of protein antigens. J. Immunol. 1992 148: 189-196. Ottenhoff, T.H.M.; Verreck, F.A.; Lichtenauer- Kaligis, E.G.; Hoeve, M.A.; Sanal, O.; Van Dissel, J.T. Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nat Genet. 2002 32: 97–105. Ottenhoff, T.H.M; Lewinsohn, D.A.; Lewinsohn, D.M. Human CD4 and CD8 T cell responses to Mycobacterium tuberculosis: antigen specificity, function, implications and applications, p 119–156. In: Wiley-VCH Verlag GmbH & Co.KGaA (Eds), Handbook of tuberculosis, 2008. Immunology and cell biology, Weinheim. Ottenhoff T.H.M. New pathways of protective and pathological host defense to micobactéria. Trends in Microb. 2012 20 (9): 419- 428 Reyes Perez, A. Modification of the fite-faraco technique for the staining of acid-alcohol fast bacilli in histologic sections. Rev Latinoam Anat Patol. 1963 7: 81- 85. Rizzi, C.; Bianco, M.V.; Bianco, F.C.; Soria, M.; Gravisaco, M.J.; Montenegro, V.; Vagnoni, L.; Garbaccio, S.; Delgado, F.; Leal, K.S.; Cataldi, A.A.; Dellagostin, O.A.; Bigi, F. Vaccination with a BCG strain overexpressing Ag85B protects cattle against Mycobacterium bovis challenge. Plos One. 2012 7 (12): e51396. doi:10.1371/journal.pone.0051396. Schuurhuis, D.H.; Van, M.N.; Ioan- Facsinay, A.; Jiawan, R.; Camps, M.; Nouta, J.; Melief, C.J.; Verbeek, J.S.; Ossendorp, F. Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine. J Immunol. 2006 176: 4573–4580. Silva, B.D.S.; Silva, E.B.; Nascimento, I.P.; Reis, M.C.G.; Kipnis, A.; Junqueira- Kipnis, A.P. MPT- 51/ CpG DNA vaccine protects mice against Mycobacterium tuberculosis. Vaccine. 2009 27: 4402- 4407. 53 Silva, E.B; Silva, B.D.S.; Leon, J.R.R.; Kipnis, A.; Santos, I.K.F.M.; Junqueira- Kipnis, A.P. Using BCG, MPT- 51 and Ag85 as antigens in an indirect ELISA for the diagnosis of bovine tuberculosis. The Vet J. 2011 187: 276- 278. Sousa, E.M.; Costa, A.C.; Trentini, M.M.; Filho, J.A.A.; Kipnis, A.; Junqueira- Kipnis, A. P. Immunogenicity of a fusion protein containing immunodominant epitopes of Ag85C, MPT51, and HspX from Mycobacterium tuberculosisin mice and active TB infection. Plos One. 2012 7 (10) e47781 doi: 10.1371/journal.pone.0047781. Spratt, J.M.; Britton, W.J.; Triccas, J.A. In vivo persistence and protective efficacy of the bacille Calmette Guerin vaccine overexpressing the HspX latency antigen. Bioengineered Bugs. 2010 1 (1): 61-65 Sweeney, K.A.; Dao, D.N; Goldberg, M.F.; Hsu, T.; Venkataswamy, M.M.; Tamayo, M.H.; Ordway, D.; Sellers, R.S.; Jain, P.; Chen, B.; Chen, M.; Kim, J.; Lukose, R.; Chan, J.; Orme, I.M.; Porcelli, S.A.; Jacobs, W.R. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat. Med. 2011 7 (10): 1261-1268. Vordermeier, M.; Gordon, S. V.; Hewinson, R. G. Mycobacterium bovis antigens for the differential diagnosis of vaccinated and infected cattle. Vet Microbiol. 2011 151: 8-13 Waters, W.R.; Palmer, M.V.; Buddle, B.M.; Vordermeier, H.M. Bovine tuberculosis vaccine research: historical perspectives and recent advances. Vaccine. 2012 30 (16): 2611- 2622. Wedlock, D.N.; Denis, M.; Vordermeier, H.M.; Hewinson, R.G.; Buddle, B.M. Vaccination of cattle with Danish and Pasteur strains of Mycobacterium bovis BCG induce different levels of IFNgamma post-vaccination, but induce similar levels of protection against bovine tuberculosis. Vet Immunol Immunopathol. 2007 118: 50– 58. World Health Organization. WHO Report 2009: Global Tuberculosis Control: Surveillance, Planning, Financing. Geneva. World Health Organization; 2009. Zhang, H.; Peng, P.; Miao, S.; Zhao, Y.; Mao, F.; Wang, L.; Bai, Y.; Xu, Z.; Wei, S.; Shi, C. Recombinant Mycobacterium smegmatis expressing an ESAT6-CFP10 fusion protein induces anti- mycobacterial immune responses and protects against Mycobacterium tuberculosis challenge in mice. Scand. J. Immunol. 2010 72: 349-357.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
Escola de Veterinária e Zootecnia - EVZ (RG)
Brasil
UFG
Programa de Pós-graduação em Ciência Animal (EVZ)
publisher.none.fl_str_mv Universidade Federal de Goiás
Escola de Veterinária e Zootecnia - EVZ (RG)
Brasil
UFG
Programa de Pós-graduação em Ciência Animal (EVZ)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1837198389895233536