Modelos de predição aplicados ao aprendizado motor

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: SANTOS, Moisés Rocha dos lattes
Orientador(a): ALMEIDA NETO, Areolino de lattes
Banca de defesa: ALMEIDA NETO, Areolino de lattes, RIBEIRO, Paulo Rogério de Almeida lattes, BARRADAS FILHO, Alex Oliveira lattes, BRASIL, Fabrício Lima lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Departamento: DEPARTAMENTO DE INFORMÁTICA/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/2571
Resumo: The present work aims to propose an approach to estimate the number of sessions required to learn a motor task. Motor activities are the main way of interacting with the world. Therefore, loss of ability to perform some of these activities as a result of a neurological disease is a serious injury to the individual. In the literature, there are many works on motor learning, mostly looking for ways to decrease the time of skill acquisition or motor rehabilitation. However, few works concentrate on trying to estimate the training time needed to achieve certain motor performance. The methodology consisted of a review of the state of the art of motor skill acquisition, as well as the initial configuration of a training platform, the application of a pilot experiment with three participants and a final experiment with eight participants. In the pilot experiment, a three-block training session for each participant was performed and it aimed to predict in which block the participant was. From three real participants, 18 simulated participants were generated, in order to measure the performance of the experiment with more participants, and the block was estimated through the average performance of the participants. In the final experiment, three sessions were performed for each participant, whose purpose was to predict in which session the participant would reach a certain error based on their profile and initial performance. The classification models used in the final experiment were: Algorithm K-Neighbors Nearer, Neural Network, Decision Tree, Support Vector Machine and Automatic Machine Learning (AutoML) with "Auto Weka". In the results of the pilot experiment, an improvement of motor skills was observed after the training. Through the data from the pilot experiment, the best results were obtained using the Decision Tree algorithm. In the results of the final experiment, it was possible to observe the motor improvement and the consistency. Using the data from the final experiment, the best results were obtained with AutoML. The work showed the possibility of estimating the number of sessions to achieve a certain performance using prediction algorithms. In addition, the relevance of the work is accentuated, since this will serve as a basis for future experiments with more healthy participants, as well as people with motor damage.
id UFMA_60d72b00566d41a712d98a2f8841a3c5
oai_identifier_str oai:tede2:tede/2571
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str
spelling ALMEIDA NETO, Areolino de279344543-68http://lattes.cnpq.br/8041675571955870ALMEIDA NETO, Areolino de279344543-68http://lattes.cnpq.br/8041675571955870RIBEIRO, Paulo Rogério de Almeidahttp://lattes.cnpq.br/0035213619257246BARRADAS FILHO, Alex Oliveirahttp://lattes.cnpq.br/4766794669249883BRASIL, Fabrício Limahttp://lattes.cnpq.br/5066712308449764056111813-25http://lattes.cnpq.br/9081434270251769SANTOS, Moisés Rocha dos2019-03-19T17:51:52Z2019-02-11SANTOS, Moisés Rocha dos. Modelos de predição aplicados ao aprendizado motor. 2019. 65 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação / CCET) - Universidade Federal do Maranhão, São Luís.https://tedebc.ufma.br/jspui/handle/tede/2571ark:/70116/00130000012k4The present work aims to propose an approach to estimate the number of sessions required to learn a motor task. Motor activities are the main way of interacting with the world. Therefore, loss of ability to perform some of these activities as a result of a neurological disease is a serious injury to the individual. In the literature, there are many works on motor learning, mostly looking for ways to decrease the time of skill acquisition or motor rehabilitation. However, few works concentrate on trying to estimate the training time needed to achieve certain motor performance. The methodology consisted of a review of the state of the art of motor skill acquisition, as well as the initial configuration of a training platform, the application of a pilot experiment with three participants and a final experiment with eight participants. In the pilot experiment, a three-block training session for each participant was performed and it aimed to predict in which block the participant was. From three real participants, 18 simulated participants were generated, in order to measure the performance of the experiment with more participants, and the block was estimated through the average performance of the participants. In the final experiment, three sessions were performed for each participant, whose purpose was to predict in which session the participant would reach a certain error based on their profile and initial performance. The classification models used in the final experiment were: Algorithm K-Neighbors Nearer, Neural Network, Decision Tree, Support Vector Machine and Automatic Machine Learning (AutoML) with "Auto Weka". In the results of the pilot experiment, an improvement of motor skills was observed after the training. Through the data from the pilot experiment, the best results were obtained using the Decision Tree algorithm. In the results of the final experiment, it was possible to observe the motor improvement and the consistency. Using the data from the final experiment, the best results were obtained with AutoML. The work showed the possibility of estimating the number of sessions to achieve a certain performance using prediction algorithms. In addition, the relevance of the work is accentuated, since this will serve as a basis for future experiments with more healthy participants, as well as people with motor damage.O presente trabalho tem como objetivo propor uma abordagem para estimar a quantidade de sessões necessárias para aprender uma tarefa motora. As atividades motoras são a principal forma de interagir com o mundo que nos rodeia. Portanto, a perda da capacidade de realizar algumas dessas atividades, como resultado de uma doença neurológica, é um dano grave ao indivíduo. Na literatura, há muitos trabalhos sobre aprendizado motor, em sua maioria buscando formas de diminuir o tempo de aquisição de habilidade ou reabilitação motora. Entretanto, poucos trabalhos concentram-se em tentar estimar o tempo de treinamento necessário para adquirir determinado desempenho motor. Desta forma, a metodologia empregada nesta pesquisa consistiu na revisão de literatura de aquisição de habilidade motora, bem como na montagem da configuração inicial de uma plataforma de treinamento, aplicação de um experimento piloto com três participantes e um experimento final com oito participantes. No experimento piloto, uma sessão de treinamento de três blocos para cada participante foi realizada e objetivou-se predizer em qual bloco o participante encontrava-se. A partir de três participantes reais, 18 participantes simulados foram gerados, visando a aferir o desempenho do experimento com mais participantes, sendo que se estimou o bloco através do desempenho médio dos participantes. No experimento final, foram realizadas três sessões para cada participante, cujo objetivo era predizer em qual sessão o participante alcançaria determinado erro com base no seu perfil e no seu desempenho inicial. Os modelos de classificação utilizados no experimento final foram: Algoritmo K-Vizinhos mais Próximos, Rede Neural MLP, Árvore de Decisão, Máquina de Suporte Vetorial e Aprendizagem de Máquina Automática (AutoML) com "AutoWeka". Nos resultados do experimento piloto, percebeu-se um aperfeiçoamento motor dos participantes após o treino. Através dos dados do experimento piloto, obtiveram-se os melhores resultados utilizando o algoritmo Árvore de Decisão. Nos resultados do experimento final, foi possível observar o aperfeiçoamento e a consistência motora. Utilizando os dados do experimento final, obtiveram-se os melhores resultados com o AutoML. Assim sendo, o trabalho mostrou a possibilidade de estimação da quantidade de sessões para atingir determinada desempenho utilizando algoritmos de predição. Adicionalmente, ressalta-se a relevância do trabalho, uma vez que este servirá de base para experimentos futuros com mais participantes saudáveis, assim como pessoas com dano motor.Submitted by Sheila MONTEIRO (sheila.monteiro@ufma.br) on 2019-03-19T17:51:52Z No. of bitstreams: 1 MOISES-SANTOS.pdf: 1187051 bytes, checksum: f41dab9ccb4237fe36a1f418b9df67a3 (MD5)Made available in DSpace on 2019-03-19T17:51:52Z (GMT). No. of bitstreams: 1 MOISES-SANTOS.pdf: 1187051 bytes, checksum: f41dab9ccb4237fe36a1f418b9df67a3 (MD5) Previous issue date: 2019-02-11Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão - FAPEMAapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETTarefa de traçadoAquisição de habilidade motoraModelos de classificaçãoTracing askMotor skill learningClassification modelsTeoria da ComputaçãoAnálise de Algoritmos e Complexidade de ComputaçãoProcessos Perceptuais e MotoresModelos de predição aplicados ao aprendizado motorPrediction models applied to motor learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALMOISES-SANTOS.pdfMOISES-SANTOS.pdfapplication/pdf1187051http://tedebc.ufma.br:8080/bitstream/tede/2571/2/MOISES-SANTOS.pdff41dab9ccb4237fe36a1f418b9df67a3MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2571/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/25712019-03-19 14:51:52.122oai:tede2:tede/2571IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312019-03-19T17:51:52Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Modelos de predição aplicados ao aprendizado motor
dc.title.alternative.eng.fl_str_mv Prediction models applied to motor learning
title Modelos de predição aplicados ao aprendizado motor
spellingShingle Modelos de predição aplicados ao aprendizado motor
SANTOS, Moisés Rocha dos
Tarefa de traçado
Aquisição de habilidade motora
Modelos de classificação
Tracing ask
Motor skill learning
Classification models
Teoria da Computação
Análise de Algoritmos e Complexidade de Computação
Processos Perceptuais e Motores
title_short Modelos de predição aplicados ao aprendizado motor
title_full Modelos de predição aplicados ao aprendizado motor
title_fullStr Modelos de predição aplicados ao aprendizado motor
title_full_unstemmed Modelos de predição aplicados ao aprendizado motor
title_sort Modelos de predição aplicados ao aprendizado motor
author SANTOS, Moisés Rocha dos
author_facet SANTOS, Moisés Rocha dos
author_role author
dc.contributor.advisor1.fl_str_mv ALMEIDA NETO, Areolino de
dc.contributor.advisor1ID.fl_str_mv 279344543-68
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8041675571955870
dc.contributor.referee1.fl_str_mv ALMEIDA NETO, Areolino de
dc.contributor.referee1ID.fl_str_mv 279344543-68
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8041675571955870
dc.contributor.referee2.fl_str_mv RIBEIRO, Paulo Rogério de Almeida
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/0035213619257246
dc.contributor.referee3.fl_str_mv BARRADAS FILHO, Alex Oliveira
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4766794669249883
dc.contributor.referee4.fl_str_mv BRASIL, Fabrício Lima
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/5066712308449764
dc.contributor.authorID.fl_str_mv 056111813-25
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9081434270251769
dc.contributor.author.fl_str_mv SANTOS, Moisés Rocha dos
contributor_str_mv ALMEIDA NETO, Areolino de
ALMEIDA NETO, Areolino de
RIBEIRO, Paulo Rogério de Almeida
BARRADAS FILHO, Alex Oliveira
BRASIL, Fabrício Lima
dc.subject.por.fl_str_mv Tarefa de traçado
Aquisição de habilidade motora
Modelos de classificação
topic Tarefa de traçado
Aquisição de habilidade motora
Modelos de classificação
Tracing ask
Motor skill learning
Classification models
Teoria da Computação
Análise de Algoritmos e Complexidade de Computação
Processos Perceptuais e Motores
dc.subject.eng.fl_str_mv Tracing ask
Motor skill learning
Classification models
dc.subject.cnpq.fl_str_mv Teoria da Computação
Análise de Algoritmos e Complexidade de Computação
Processos Perceptuais e Motores
description The present work aims to propose an approach to estimate the number of sessions required to learn a motor task. Motor activities are the main way of interacting with the world. Therefore, loss of ability to perform some of these activities as a result of a neurological disease is a serious injury to the individual. In the literature, there are many works on motor learning, mostly looking for ways to decrease the time of skill acquisition or motor rehabilitation. However, few works concentrate on trying to estimate the training time needed to achieve certain motor performance. The methodology consisted of a review of the state of the art of motor skill acquisition, as well as the initial configuration of a training platform, the application of a pilot experiment with three participants and a final experiment with eight participants. In the pilot experiment, a three-block training session for each participant was performed and it aimed to predict in which block the participant was. From three real participants, 18 simulated participants were generated, in order to measure the performance of the experiment with more participants, and the block was estimated through the average performance of the participants. In the final experiment, three sessions were performed for each participant, whose purpose was to predict in which session the participant would reach a certain error based on their profile and initial performance. The classification models used in the final experiment were: Algorithm K-Neighbors Nearer, Neural Network, Decision Tree, Support Vector Machine and Automatic Machine Learning (AutoML) with "Auto Weka". In the results of the pilot experiment, an improvement of motor skills was observed after the training. Through the data from the pilot experiment, the best results were obtained using the Decision Tree algorithm. In the results of the final experiment, it was possible to observe the motor improvement and the consistency. Using the data from the final experiment, the best results were obtained with AutoML. The work showed the possibility of estimating the number of sessions to achieve a certain performance using prediction algorithms. In addition, the relevance of the work is accentuated, since this will serve as a basis for future experiments with more healthy participants, as well as people with motor damage.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-03-19T17:51:52Z
dc.date.issued.fl_str_mv 2019-02-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Moisés Rocha dos. Modelos de predição aplicados ao aprendizado motor. 2019. 65 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação / CCET) - Universidade Federal do Maranhão, São Luís.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/2571
dc.identifier.dark.fl_str_mv ark:/70116/00130000012k4
identifier_str_mv SANTOS, Moisés Rocha dos. Modelos de predição aplicados ao aprendizado motor. 2019. 65 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação / CCET) - Universidade Federal do Maranhão, São Luís.
ark:/70116/00130000012k4
url https://tedebc.ufma.br/jspui/handle/tede/2571
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE INFORMÁTICA/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/2571/2/MOISES-SANTOS.pdf
http://tedebc.ufma.br:8080/bitstream/tede/2571/1/license.txt
bitstream.checksum.fl_str_mv f41dab9ccb4237fe36a1f418b9df67a3
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1831315128553832448