Modelos de predição aplicados ao aprendizado motor
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
|
Departamento: |
DEPARTAMENTO DE INFORMÁTICA/CCET
|
País: |
Brasil
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://tedebc.ufma.br/jspui/handle/tede/2571 |
Resumo: | The present work aims to propose an approach to estimate the number of sessions required to learn a motor task. Motor activities are the main way of interacting with the world. Therefore, loss of ability to perform some of these activities as a result of a neurological disease is a serious injury to the individual. In the literature, there are many works on motor learning, mostly looking for ways to decrease the time of skill acquisition or motor rehabilitation. However, few works concentrate on trying to estimate the training time needed to achieve certain motor performance. The methodology consisted of a review of the state of the art of motor skill acquisition, as well as the initial configuration of a training platform, the application of a pilot experiment with three participants and a final experiment with eight participants. In the pilot experiment, a three-block training session for each participant was performed and it aimed to predict in which block the participant was. From three real participants, 18 simulated participants were generated, in order to measure the performance of the experiment with more participants, and the block was estimated through the average performance of the participants. In the final experiment, three sessions were performed for each participant, whose purpose was to predict in which session the participant would reach a certain error based on their profile and initial performance. The classification models used in the final experiment were: Algorithm K-Neighbors Nearer, Neural Network, Decision Tree, Support Vector Machine and Automatic Machine Learning (AutoML) with "Auto Weka". In the results of the pilot experiment, an improvement of motor skills was observed after the training. Through the data from the pilot experiment, the best results were obtained using the Decision Tree algorithm. In the results of the final experiment, it was possible to observe the motor improvement and the consistency. Using the data from the final experiment, the best results were obtained with AutoML. The work showed the possibility of estimating the number of sessions to achieve a certain performance using prediction algorithms. In addition, the relevance of the work is accentuated, since this will serve as a basis for future experiments with more healthy participants, as well as people with motor damage. |
id |
UFMA_60d72b00566d41a712d98a2f8841a3c5 |
---|---|
oai_identifier_str |
oai:tede2:tede/2571 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
|
spelling |
ALMEIDA NETO, Areolino de279344543-68http://lattes.cnpq.br/8041675571955870ALMEIDA NETO, Areolino de279344543-68http://lattes.cnpq.br/8041675571955870RIBEIRO, Paulo Rogério de Almeidahttp://lattes.cnpq.br/0035213619257246BARRADAS FILHO, Alex Oliveirahttp://lattes.cnpq.br/4766794669249883BRASIL, Fabrício Limahttp://lattes.cnpq.br/5066712308449764056111813-25http://lattes.cnpq.br/9081434270251769SANTOS, Moisés Rocha dos2019-03-19T17:51:52Z2019-02-11SANTOS, Moisés Rocha dos. Modelos de predição aplicados ao aprendizado motor. 2019. 65 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação / CCET) - Universidade Federal do Maranhão, São Luís.https://tedebc.ufma.br/jspui/handle/tede/2571ark:/70116/00130000012k4The present work aims to propose an approach to estimate the number of sessions required to learn a motor task. Motor activities are the main way of interacting with the world. Therefore, loss of ability to perform some of these activities as a result of a neurological disease is a serious injury to the individual. In the literature, there are many works on motor learning, mostly looking for ways to decrease the time of skill acquisition or motor rehabilitation. However, few works concentrate on trying to estimate the training time needed to achieve certain motor performance. The methodology consisted of a review of the state of the art of motor skill acquisition, as well as the initial configuration of a training platform, the application of a pilot experiment with three participants and a final experiment with eight participants. In the pilot experiment, a three-block training session for each participant was performed and it aimed to predict in which block the participant was. From three real participants, 18 simulated participants were generated, in order to measure the performance of the experiment with more participants, and the block was estimated through the average performance of the participants. In the final experiment, three sessions were performed for each participant, whose purpose was to predict in which session the participant would reach a certain error based on their profile and initial performance. The classification models used in the final experiment were: Algorithm K-Neighbors Nearer, Neural Network, Decision Tree, Support Vector Machine and Automatic Machine Learning (AutoML) with "Auto Weka". In the results of the pilot experiment, an improvement of motor skills was observed after the training. Through the data from the pilot experiment, the best results were obtained using the Decision Tree algorithm. In the results of the final experiment, it was possible to observe the motor improvement and the consistency. Using the data from the final experiment, the best results were obtained with AutoML. The work showed the possibility of estimating the number of sessions to achieve a certain performance using prediction algorithms. In addition, the relevance of the work is accentuated, since this will serve as a basis for future experiments with more healthy participants, as well as people with motor damage.O presente trabalho tem como objetivo propor uma abordagem para estimar a quantidade de sessões necessárias para aprender uma tarefa motora. As atividades motoras são a principal forma de interagir com o mundo que nos rodeia. Portanto, a perda da capacidade de realizar algumas dessas atividades, como resultado de uma doença neurológica, é um dano grave ao indivíduo. Na literatura, há muitos trabalhos sobre aprendizado motor, em sua maioria buscando formas de diminuir o tempo de aquisição de habilidade ou reabilitação motora. Entretanto, poucos trabalhos concentram-se em tentar estimar o tempo de treinamento necessário para adquirir determinado desempenho motor. Desta forma, a metodologia empregada nesta pesquisa consistiu na revisão de literatura de aquisição de habilidade motora, bem como na montagem da configuração inicial de uma plataforma de treinamento, aplicação de um experimento piloto com três participantes e um experimento final com oito participantes. No experimento piloto, uma sessão de treinamento de três blocos para cada participante foi realizada e objetivou-se predizer em qual bloco o participante encontrava-se. A partir de três participantes reais, 18 participantes simulados foram gerados, visando a aferir o desempenho do experimento com mais participantes, sendo que se estimou o bloco através do desempenho médio dos participantes. No experimento final, foram realizadas três sessões para cada participante, cujo objetivo era predizer em qual sessão o participante alcançaria determinado erro com base no seu perfil e no seu desempenho inicial. Os modelos de classificação utilizados no experimento final foram: Algoritmo K-Vizinhos mais Próximos, Rede Neural MLP, Árvore de Decisão, Máquina de Suporte Vetorial e Aprendizagem de Máquina Automática (AutoML) com "AutoWeka". Nos resultados do experimento piloto, percebeu-se um aperfeiçoamento motor dos participantes após o treino. Através dos dados do experimento piloto, obtiveram-se os melhores resultados utilizando o algoritmo Árvore de Decisão. Nos resultados do experimento final, foi possível observar o aperfeiçoamento e a consistência motora. Utilizando os dados do experimento final, obtiveram-se os melhores resultados com o AutoML. Assim sendo, o trabalho mostrou a possibilidade de estimação da quantidade de sessões para atingir determinada desempenho utilizando algoritmos de predição. Adicionalmente, ressalta-se a relevância do trabalho, uma vez que este servirá de base para experimentos futuros com mais participantes saudáveis, assim como pessoas com dano motor.Submitted by Sheila MONTEIRO (sheila.monteiro@ufma.br) on 2019-03-19T17:51:52Z No. of bitstreams: 1 MOISES-SANTOS.pdf: 1187051 bytes, checksum: f41dab9ccb4237fe36a1f418b9df67a3 (MD5)Made available in DSpace on 2019-03-19T17:51:52Z (GMT). No. of bitstreams: 1 MOISES-SANTOS.pdf: 1187051 bytes, checksum: f41dab9ccb4237fe36a1f418b9df67a3 (MD5) Previous issue date: 2019-02-11Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão - FAPEMAapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETTarefa de traçadoAquisição de habilidade motoraModelos de classificaçãoTracing askMotor skill learningClassification modelsTeoria da ComputaçãoAnálise de Algoritmos e Complexidade de ComputaçãoProcessos Perceptuais e MotoresModelos de predição aplicados ao aprendizado motorPrediction models applied to motor learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALMOISES-SANTOS.pdfMOISES-SANTOS.pdfapplication/pdf1187051http://tedebc.ufma.br:8080/bitstream/tede/2571/2/MOISES-SANTOS.pdff41dab9ccb4237fe36a1f418b9df67a3MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2571/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/25712019-03-19 14:51:52.122oai:tede2:tede/2571IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312019-03-19T17:51:52Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Modelos de predição aplicados ao aprendizado motor |
dc.title.alternative.eng.fl_str_mv |
Prediction models applied to motor learning |
title |
Modelos de predição aplicados ao aprendizado motor |
spellingShingle |
Modelos de predição aplicados ao aprendizado motor SANTOS, Moisés Rocha dos Tarefa de traçado Aquisição de habilidade motora Modelos de classificação Tracing ask Motor skill learning Classification models Teoria da Computação Análise de Algoritmos e Complexidade de Computação Processos Perceptuais e Motores |
title_short |
Modelos de predição aplicados ao aprendizado motor |
title_full |
Modelos de predição aplicados ao aprendizado motor |
title_fullStr |
Modelos de predição aplicados ao aprendizado motor |
title_full_unstemmed |
Modelos de predição aplicados ao aprendizado motor |
title_sort |
Modelos de predição aplicados ao aprendizado motor |
author |
SANTOS, Moisés Rocha dos |
author_facet |
SANTOS, Moisés Rocha dos |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
ALMEIDA NETO, Areolino de |
dc.contributor.advisor1ID.fl_str_mv |
279344543-68 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8041675571955870 |
dc.contributor.referee1.fl_str_mv |
ALMEIDA NETO, Areolino de |
dc.contributor.referee1ID.fl_str_mv |
279344543-68 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/8041675571955870 |
dc.contributor.referee2.fl_str_mv |
RIBEIRO, Paulo Rogério de Almeida |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/0035213619257246 |
dc.contributor.referee3.fl_str_mv |
BARRADAS FILHO, Alex Oliveira |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/4766794669249883 |
dc.contributor.referee4.fl_str_mv |
BRASIL, Fabrício Lima |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/5066712308449764 |
dc.contributor.authorID.fl_str_mv |
056111813-25 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9081434270251769 |
dc.contributor.author.fl_str_mv |
SANTOS, Moisés Rocha dos |
contributor_str_mv |
ALMEIDA NETO, Areolino de ALMEIDA NETO, Areolino de RIBEIRO, Paulo Rogério de Almeida BARRADAS FILHO, Alex Oliveira BRASIL, Fabrício Lima |
dc.subject.por.fl_str_mv |
Tarefa de traçado Aquisição de habilidade motora Modelos de classificação |
topic |
Tarefa de traçado Aquisição de habilidade motora Modelos de classificação Tracing ask Motor skill learning Classification models Teoria da Computação Análise de Algoritmos e Complexidade de Computação Processos Perceptuais e Motores |
dc.subject.eng.fl_str_mv |
Tracing ask Motor skill learning Classification models |
dc.subject.cnpq.fl_str_mv |
Teoria da Computação Análise de Algoritmos e Complexidade de Computação Processos Perceptuais e Motores |
description |
The present work aims to propose an approach to estimate the number of sessions required to learn a motor task. Motor activities are the main way of interacting with the world. Therefore, loss of ability to perform some of these activities as a result of a neurological disease is a serious injury to the individual. In the literature, there are many works on motor learning, mostly looking for ways to decrease the time of skill acquisition or motor rehabilitation. However, few works concentrate on trying to estimate the training time needed to achieve certain motor performance. The methodology consisted of a review of the state of the art of motor skill acquisition, as well as the initial configuration of a training platform, the application of a pilot experiment with three participants and a final experiment with eight participants. In the pilot experiment, a three-block training session for each participant was performed and it aimed to predict in which block the participant was. From three real participants, 18 simulated participants were generated, in order to measure the performance of the experiment with more participants, and the block was estimated through the average performance of the participants. In the final experiment, three sessions were performed for each participant, whose purpose was to predict in which session the participant would reach a certain error based on their profile and initial performance. The classification models used in the final experiment were: Algorithm K-Neighbors Nearer, Neural Network, Decision Tree, Support Vector Machine and Automatic Machine Learning (AutoML) with "Auto Weka". In the results of the pilot experiment, an improvement of motor skills was observed after the training. Through the data from the pilot experiment, the best results were obtained using the Decision Tree algorithm. In the results of the final experiment, it was possible to observe the motor improvement and the consistency. Using the data from the final experiment, the best results were obtained with AutoML. The work showed the possibility of estimating the number of sessions to achieve a certain performance using prediction algorithms. In addition, the relevance of the work is accentuated, since this will serve as a basis for future experiments with more healthy participants, as well as people with motor damage. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-03-19T17:51:52Z |
dc.date.issued.fl_str_mv |
2019-02-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS, Moisés Rocha dos. Modelos de predição aplicados ao aprendizado motor. 2019. 65 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação / CCET) - Universidade Federal do Maranhão, São Luís. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/2571 |
dc.identifier.dark.fl_str_mv |
ark:/70116/00130000012k4 |
identifier_str_mv |
SANTOS, Moisés Rocha dos. Modelos de predição aplicados ao aprendizado motor. 2019. 65 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação / CCET) - Universidade Federal do Maranhão, São Luís. ark:/70116/00130000012k4 |
url |
https://tedebc.ufma.br/jspui/handle/tede/2571 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE INFORMÁTICA/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/2571/2/MOISES-SANTOS.pdf http://tedebc.ufma.br:8080/bitstream/tede/2571/1/license.txt |
bitstream.checksum.fl_str_mv |
f41dab9ccb4237fe36a1f418b9df67a3 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1831315128553832448 |