Aplicação de máquinas de aprendizado extremo ao problema de aprendizado ativo

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Euler Guimarães Horta
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/BUBD-A4BK3A
Resumo: The main objective of Active Learning is to choose only the most informative patterns to be labeled and learned. In Active Learning scenario a selection strategy is used to analyze a non-labeled pattern and to decide whether its label should be queried to a specialist. Usually, this labeling process has a high cost, which motivates the study of strategies that minimize the number of necessary labels for learning. Traditional Active Learning approaches make some unrealistic considerations about the data, such as requiring linear separability or that the data distribution should be uniform. Furthermore, traditional approaches require fine-tuning parameters, which implies that some labels should be reserved for this purpose, increasing the costs. In this thesis we present two Active Learning strategies that make no considerations about the data distribution and that do not require fine-tuning parameters. The proposed algorithms are based on Extreme Learning Machines (ELM) with a Hebbian Perceptron with normalized weights in the output layer. Our strategies decide whether a pattern should be labeled using a simple convergence test. This test was obtained by adapting the Perceptron Convergence Theorem. The proposed methods allow online learning, they are practical and fast, and they are able to obtain a good solution in terms of neural complexity and generalization capability. The experimental results show that our models have similar performance to regularized ELMs and SVMs with ELM kernel. However, the proposed models learn a fewer number of labeled patterns without any computationally expensive optimization process and without fine-tuning parameters.
id UFMG_445e2c714493e3a623a715cfcc3db22b
oai_identifier_str oai:repositorio.ufmg.br:1843/BUBD-A4BK3A
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Aplicação de máquinas de aprendizado extremo ao problema de aprendizado ativoEngenharia elétricaEngenharia elétricaThe main objective of Active Learning is to choose only the most informative patterns to be labeled and learned. In Active Learning scenario a selection strategy is used to analyze a non-labeled pattern and to decide whether its label should be queried to a specialist. Usually, this labeling process has a high cost, which motivates the study of strategies that minimize the number of necessary labels for learning. Traditional Active Learning approaches make some unrealistic considerations about the data, such as requiring linear separability or that the data distribution should be uniform. Furthermore, traditional approaches require fine-tuning parameters, which implies that some labels should be reserved for this purpose, increasing the costs. In this thesis we present two Active Learning strategies that make no considerations about the data distribution and that do not require fine-tuning parameters. The proposed algorithms are based on Extreme Learning Machines (ELM) with a Hebbian Perceptron with normalized weights in the output layer. Our strategies decide whether a pattern should be labeled using a simple convergence test. This test was obtained by adapting the Perceptron Convergence Theorem. The proposed methods allow online learning, they are practical and fast, and they are able to obtain a good solution in terms of neural complexity and generalization capability. The experimental results show that our models have similar performance to regularized ELMs and SVMs with ELM kernel. However, the proposed models learn a fewer number of labeled patterns without any computationally expensive optimization process and without fine-tuning parameters.O Aprendizado Ativo tem o objetivo de escolher apenas os padrões mais informativos para rotulação e aprendizado. No Aprendizado Ativo uma estratégia é utilizada para analisar um padrão não rotulado e decidir se ele deve ou não ter o seu rótulo solicitado a um especialista. Em geral essa rotulação tem um custo elevado, o que motiva o estudo de técnicas que minimizem o número de rótulos necessários para o aprendizado. As abordagens tradicionais de Aprendizado Ativo geralmente fazem algumas considerações irreais em relação aos dados, como exigir separabilidade linear ou que a distribuição dos dados seja uniforme. Além disso, os modelos tradicionais necessitam de um processo de ajuste fino de parâmetros, o que exige que rótulos sejam reservados para esse fim, aumentando os custos do processo. Nesta tese são apresentadas duas estratégias de Aprendizado Ativo que não fazem nenhuma consideração quanto aos dados e que não necessitam de ajuste fino de parâmetros. Os algoritmos propostos são baseados em Máquinas de Aprendizado Extremo (Extreme Learning Machines - ELM ) e em um Perceptron com pesos normalizados treinado com aprendizado Hebbiano. As estratégias de Aprendizado Ativo decidem se um padrão deve ser rotulado utilizando um simples teste de convergência. Esse teste é obtido através de uma adaptação do Teorema de Convergência do Perceptron. Os modelos propostos permitem o aprendizado incremental e online, são práticos e rápidos, e são capazes de obter uma boa solução em termos de complexidade neural e de capacidade de generalização. Os resultados dos experimentos mostram que os modelos desenvolvidos têm performance similar às ELMs regularizadas e às SVMs com kernel ELM. Entretanto, os modelos propostos utilizam uma quantidade de rótulos muito menor, sem a necessidade de processos de otimização computacionalmente caros e sem a necessidade de ajuste fino de parâmetros.Universidade Federal de Minas GeraisUFMGAntonio de Padua BragaAndre Paim LemosLuis Antonio AguirreCarlos Eduardo PedreiraAdriano Lorena Inacio de OliveiraEuler Guimarães Horta2019-08-11T20:56:34Z2019-08-11T20:56:34Z2015-10-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/1843/BUBD-A4BK3Ainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-11-14T12:20:54Zoai:repositorio.ufmg.br:1843/BUBD-A4BK3ARepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-11-14T12:20:54Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Aplicação de máquinas de aprendizado extremo ao problema de aprendizado ativo
title Aplicação de máquinas de aprendizado extremo ao problema de aprendizado ativo
spellingShingle Aplicação de máquinas de aprendizado extremo ao problema de aprendizado ativo
Euler Guimarães Horta
Engenharia elétrica
Engenharia elétrica
title_short Aplicação de máquinas de aprendizado extremo ao problema de aprendizado ativo
title_full Aplicação de máquinas de aprendizado extremo ao problema de aprendizado ativo
title_fullStr Aplicação de máquinas de aprendizado extremo ao problema de aprendizado ativo
title_full_unstemmed Aplicação de máquinas de aprendizado extremo ao problema de aprendizado ativo
title_sort Aplicação de máquinas de aprendizado extremo ao problema de aprendizado ativo
author Euler Guimarães Horta
author_facet Euler Guimarães Horta
author_role author
dc.contributor.none.fl_str_mv Antonio de Padua Braga
Andre Paim Lemos
Luis Antonio Aguirre
Carlos Eduardo Pedreira
Adriano Lorena Inacio de Oliveira
dc.contributor.author.fl_str_mv Euler Guimarães Horta
dc.subject.por.fl_str_mv Engenharia elétrica
Engenharia elétrica
topic Engenharia elétrica
Engenharia elétrica
description The main objective of Active Learning is to choose only the most informative patterns to be labeled and learned. In Active Learning scenario a selection strategy is used to analyze a non-labeled pattern and to decide whether its label should be queried to a specialist. Usually, this labeling process has a high cost, which motivates the study of strategies that minimize the number of necessary labels for learning. Traditional Active Learning approaches make some unrealistic considerations about the data, such as requiring linear separability or that the data distribution should be uniform. Furthermore, traditional approaches require fine-tuning parameters, which implies that some labels should be reserved for this purpose, increasing the costs. In this thesis we present two Active Learning strategies that make no considerations about the data distribution and that do not require fine-tuning parameters. The proposed algorithms are based on Extreme Learning Machines (ELM) with a Hebbian Perceptron with normalized weights in the output layer. Our strategies decide whether a pattern should be labeled using a simple convergence test. This test was obtained by adapting the Perceptron Convergence Theorem. The proposed methods allow online learning, they are practical and fast, and they are able to obtain a good solution in terms of neural complexity and generalization capability. The experimental results show that our models have similar performance to regularized ELMs and SVMs with ELM kernel. However, the proposed models learn a fewer number of labeled patterns without any computationally expensive optimization process and without fine-tuning parameters.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-07
2019-08-11T20:56:34Z
2019-08-11T20:56:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/BUBD-A4BK3A
url http://hdl.handle.net/1843/BUBD-A4BK3A
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1828929685448294400