Advances in quantum neural networks
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/32689 |
Resumo: | Redes Neurais Artificiais (RNA) têm sido utilizadas como modelos computacionais que aprendem a partir de um conjunto de dados e são capazes de extrapolar esse conhecimento a partir das generalizações inerentes ao seu processo de decisão. Com o crescimento da computação quântica como novo paradigma de processamento de informação, modelos quânticos de redes neurais têm sido propostos para coadunar os benefícios da computação quântica com os benefícios das RNAs. Os modelos quânticos de RNA existentes assumem a dificuldade de implementar a não-linearidade intrínseca dos neurônios que compõem a RNA, uma vez que tradicionalmente a computação quântica possui apenas operadores unitários. Há algumas propostas na literatura de modelos de neurônios que simulam essa não-linearidade, mas elas aparecem simulando alguma função não-linear específica, como a função de limiar ou arco-tangente. Há ainda as RNAs que possuem comportamento de memória associativa, fazendo a recuperação de informação a partir de uma entrada igual ou parecida com seus padrões armazenados. A implementação desses modelos envolve duas etapas, o processo de armazenamento e a recuperação de informação. Os modelos quânticos de memória associativa têm utilizado a superposição quântica para armazenamento e alguns modelos foram propostos para recuperação de informação. Nesse trabalho estendemos o funcionamento não-linear do Perceptron, permitindo que um neurônio quântico execute qualquer função não-linear discreta. O modelo proposto permite que o neurônio possa simular o comportamento dos neurônios clássicos assim como utilizar dos recursos intrínsecos da computação quântica como superposição e emaranhamento. Há também a proposição de um neurônio que possui memória interna e que pode armazenar informações de iterações anteriores a medida que ele é executado. Esse modelo permite incorporar informações espaço-temporais em seu modelo. Em termos de memórias associativas, propusemos a utilização de dois modelos de recuperação probabilística de informação, um não linear e outro linear, utilizando os algoritmos quânticos de Grover e transformada inversa de Fourier. Esse modelo de memória permite reconhecer informações óximas ou iguais ao conteúdo que está na memória e possui custo linear de operação. |
id |
UFPE_801132dcbe7e8815db1d30699c5b1ce8 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/32689 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
|
spelling |
Advances in quantum neural networksInteligência artificialComputação quânticaRedes neurais quânticasRedes Neurais Artificiais (RNA) têm sido utilizadas como modelos computacionais que aprendem a partir de um conjunto de dados e são capazes de extrapolar esse conhecimento a partir das generalizações inerentes ao seu processo de decisão. Com o crescimento da computação quântica como novo paradigma de processamento de informação, modelos quânticos de redes neurais têm sido propostos para coadunar os benefícios da computação quântica com os benefícios das RNAs. Os modelos quânticos de RNA existentes assumem a dificuldade de implementar a não-linearidade intrínseca dos neurônios que compõem a RNA, uma vez que tradicionalmente a computação quântica possui apenas operadores unitários. Há algumas propostas na literatura de modelos de neurônios que simulam essa não-linearidade, mas elas aparecem simulando alguma função não-linear específica, como a função de limiar ou arco-tangente. Há ainda as RNAs que possuem comportamento de memória associativa, fazendo a recuperação de informação a partir de uma entrada igual ou parecida com seus padrões armazenados. A implementação desses modelos envolve duas etapas, o processo de armazenamento e a recuperação de informação. Os modelos quânticos de memória associativa têm utilizado a superposição quântica para armazenamento e alguns modelos foram propostos para recuperação de informação. Nesse trabalho estendemos o funcionamento não-linear do Perceptron, permitindo que um neurônio quântico execute qualquer função não-linear discreta. O modelo proposto permite que o neurônio possa simular o comportamento dos neurônios clássicos assim como utilizar dos recursos intrínsecos da computação quântica como superposição e emaranhamento. Há também a proposição de um neurônio que possui memória interna e que pode armazenar informações de iterações anteriores a medida que ele é executado. Esse modelo permite incorporar informações espaço-temporais em seu modelo. Em termos de memórias associativas, propusemos a utilização de dois modelos de recuperação probabilística de informação, um não linear e outro linear, utilizando os algoritmos quânticos de Grover e transformada inversa de Fourier. Esse modelo de memória permite reconhecer informações óximas ou iguais ao conteúdo que está na memória e possui custo linear de operação.CNPqArtificial neural networks (ANNs) have been used as computational models that learn using a training dataset and are capable to generalise knowledge in their decision process. With the growing of quantum computing field, as new paradigm of information processing, quantum neural networks were proposed to join the benefits of quantum computing and benefits of ANNs. The quantum ANNs models have difficulty to implement the intrinsic non-linearity of neurons of ANNs since traditionally quantum operators are unitary. Some neuron proposed models in literature appear simulating some specific nonlinear function, as threshold or arctangent functions. There are RNA models which behaves as associative memories, doing recovering of information for a given input equal or similar with internal content of the memory. The implementation of these models involve two steps, the storing process and information recovering process. The quantum models of associative memories have used a quantum state in superposition to store the patterns in the memory and some models were proposed to recovery an information in the memory. In this work we extend the nonlinear operation of Perceptron, allowing that the quantum neuron executes any nonlinear discrete function. There is also the proposition of quantum neuron with internal memory being capable to save previous iterations of its execution.In terms of associative memories, we propose two models of information recovery, one nonlinear and other linear, using the algorithms of Grover and inverse of Fourier transform.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoLUDERMIR, Teresa BernardaOLIVEIRA JUNIOR, Wilson Rosa dehttp://lattes.cnpq.br/9643216021359436http://lattes.cnpq.br/6321179168854922PAULA NETO, Fernando Maciano de2019-09-12T18:39:17Z2019-09-12T18:39:17Z2018-11-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/32689porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-26T07:09:36Zoai:repositorio.ufpe.br:123456789/32689Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T07:09:36Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.none.fl_str_mv |
Advances in quantum neural networks |
title |
Advances in quantum neural networks |
spellingShingle |
Advances in quantum neural networks PAULA NETO, Fernando Maciano de Inteligência artificial Computação quântica Redes neurais quânticas |
title_short |
Advances in quantum neural networks |
title_full |
Advances in quantum neural networks |
title_fullStr |
Advances in quantum neural networks |
title_full_unstemmed |
Advances in quantum neural networks |
title_sort |
Advances in quantum neural networks |
author |
PAULA NETO, Fernando Maciano de |
author_facet |
PAULA NETO, Fernando Maciano de |
author_role |
author |
dc.contributor.none.fl_str_mv |
LUDERMIR, Teresa Bernarda OLIVEIRA JUNIOR, Wilson Rosa de http://lattes.cnpq.br/9643216021359436 http://lattes.cnpq.br/6321179168854922 |
dc.contributor.author.fl_str_mv |
PAULA NETO, Fernando Maciano de |
dc.subject.por.fl_str_mv |
Inteligência artificial Computação quântica Redes neurais quânticas |
topic |
Inteligência artificial Computação quântica Redes neurais quânticas |
description |
Redes Neurais Artificiais (RNA) têm sido utilizadas como modelos computacionais que aprendem a partir de um conjunto de dados e são capazes de extrapolar esse conhecimento a partir das generalizações inerentes ao seu processo de decisão. Com o crescimento da computação quântica como novo paradigma de processamento de informação, modelos quânticos de redes neurais têm sido propostos para coadunar os benefícios da computação quântica com os benefícios das RNAs. Os modelos quânticos de RNA existentes assumem a dificuldade de implementar a não-linearidade intrínseca dos neurônios que compõem a RNA, uma vez que tradicionalmente a computação quântica possui apenas operadores unitários. Há algumas propostas na literatura de modelos de neurônios que simulam essa não-linearidade, mas elas aparecem simulando alguma função não-linear específica, como a função de limiar ou arco-tangente. Há ainda as RNAs que possuem comportamento de memória associativa, fazendo a recuperação de informação a partir de uma entrada igual ou parecida com seus padrões armazenados. A implementação desses modelos envolve duas etapas, o processo de armazenamento e a recuperação de informação. Os modelos quânticos de memória associativa têm utilizado a superposição quântica para armazenamento e alguns modelos foram propostos para recuperação de informação. Nesse trabalho estendemos o funcionamento não-linear do Perceptron, permitindo que um neurônio quântico execute qualquer função não-linear discreta. O modelo proposto permite que o neurônio possa simular o comportamento dos neurônios clássicos assim como utilizar dos recursos intrínsecos da computação quântica como superposição e emaranhamento. Há também a proposição de um neurônio que possui memória interna e que pode armazenar informações de iterações anteriores a medida que ele é executado. Esse modelo permite incorporar informações espaço-temporais em seu modelo. Em termos de memórias associativas, propusemos a utilização de dois modelos de recuperação probabilística de informação, um não linear e outro linear, utilizando os algoritmos quânticos de Grover e transformada inversa de Fourier. Esse modelo de memória permite reconhecer informações óximas ou iguais ao conteúdo que está na memória e possui custo linear de operação. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-23 2019-09-12T18:39:17Z 2019-09-12T18:39:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/32689 |
url |
https://repositorio.ufpe.br/handle/123456789/32689 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1833923210704322560 |