A -model with ∞-groupoid structure based in the Scott’s -model D∞

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: MARTÍNEZ RIVILLAS, Daniel Orlando
Orientador(a): QUEIROZ, José Guerra Barretto de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/38554
Resumo: The lambda calculus is a universal programming language that represents the functions computable from the point of view of the functions as a rule, that allow the evaluation of a function on any other function. This language can be seen as a theory, with certain pre-established axioms and inference rules, which can be represented by models. Dana Scott proposed the first non-trivial model of the extensional lambda calculus, known as ∞, in order to represent the -terms as the typical functions of set theory, where it is not allowed to evaluate a function about itself. This thesis propose a construction of an ∞-groupoid from any lambda model endowed with a topology. We apply this construction for the particular case ∞ and we observe that the Scott topology does not provide relevant information about of the relation between higher equivalences. This motivates the search for a new line of research focused on the exploration of -models with the structure of a non-trivial ∞-groupoid to generalize the proofs of term conversion (e.g., -equality, -equality) to higher proof in -calculus.
id UFPE_ea90c2f2b3dfa1a37040914200874b97
oai_identifier_str oai:repositorio.ufpe.br:123456789/38554
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling MARTÍNEZ RIVILLAS, Daniel Orlandohttp://lattes.cnpq.br/1825502153580661QUEIROZ, José Guerra Barretto de2020-11-09T21:32:03Z2020-11-09T21:32:03Z2020-02-28MARTÍNEZ RIVILLAS, Daniel Orlando. A -model with ∞-groupoid structure based in the Scott’s -model D∞. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38554The lambda calculus is a universal programming language that represents the functions computable from the point of view of the functions as a rule, that allow the evaluation of a function on any other function. This language can be seen as a theory, with certain pre-established axioms and inference rules, which can be represented by models. Dana Scott proposed the first non-trivial model of the extensional lambda calculus, known as ∞, in order to represent the -terms as the typical functions of set theory, where it is not allowed to evaluate a function about itself. This thesis propose a construction of an ∞-groupoid from any lambda model endowed with a topology. We apply this construction for the particular case ∞ and we observe that the Scott topology does not provide relevant information about of the relation between higher equivalences. This motivates the search for a new line of research focused on the exploration of -models with the structure of a non-trivial ∞-groupoid to generalize the proofs of term conversion (e.g., -equality, -equality) to higher proof in -calculus.O cálculo lambda é uma linguagem de programação universal que representa as funções computáveis do ponto de vista das funções como regra, que permitem a avaliação de uma função em qualquer outra função. Essa linguagem pode ser vista como uma teoria, com certos axiomas e regras de inferência pré-estabelecidos, que podem ser representados por modelos. Dana Scott propôs o primeiro modelo não-trivial do cálculo lambda extensional, conhecido como ∞, para representar os -termos como as funções típicas da teoria dos conjuntos, onde não é permitido avaliar uma função sobre si mesmo. Esta tese propõe a construção de um ∞-groupoid a partir de qualquer modelo lambda dotado de uma topologia. Aplicamos esta construção para o caso particular ∞ e observamos que a topologia Scott não fornece informações relevantes sobre a relação entre equivalências superiores. Isso motiva uma nova linha de pesquisa focada na exploração de -modelos com a estrutura de um ∞-groupoide não trivial para generalizar as provas de conversão de termos (e.g., -igualdade, -equalidade) à provas do ordem superior em -calculus.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessTeoria da computaçãoCálculo lambdaA -model with ∞-groupoid structure based in the Scott’s -model D∞info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/38554/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALDISSERTAÇÃO Daniel Orlando Martínez Rivillas.pdfDISSERTAÇÃO Daniel Orlando Martínez Rivillas.pdfapplication/pdf1796691https://repositorio.ufpe.br/bitstream/123456789/38554/1/DISSERTA%c3%87%c3%83O%20Daniel%20Orlando%20Mart%c3%adnez%20Rivillas.pdfeef4ed6e961cb7fc4c1684d4578e34ffMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/38554/3/license.txtbd573a5ca8288eb7272482765f819534MD53THUMBNAILDISSERTAÇÃO Daniel Orlando Martínez Rivillas.pdf.jpgDISSERTAÇÃO Daniel Orlando Martínez Rivillas.pdf.jpgGenerated Thumbnailimage/jpeg1162https://repositorio.ufpe.br/bitstream/123456789/38554/4/DISSERTA%c3%87%c3%83O%20Daniel%20Orlando%20Mart%c3%adnez%20Rivillas.pdf.jpg2c392246123949c6a100747e49dd7243MD54123456789/385542020-11-10 02:16:17.702oai:repositorio.ufpe.br:123456789/38554TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-11-10T05:16:17Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv A -model with ∞-groupoid structure based in the Scott’s -model D∞
title A -model with ∞-groupoid structure based in the Scott’s -model D∞
spellingShingle A -model with ∞-groupoid structure based in the Scott’s -model D∞
MARTÍNEZ RIVILLAS, Daniel Orlando
Teoria da computação
Cálculo lambda
title_short A -model with ∞-groupoid structure based in the Scott’s -model D∞
title_full A -model with ∞-groupoid structure based in the Scott’s -model D∞
title_fullStr A -model with ∞-groupoid structure based in the Scott’s -model D∞
title_full_unstemmed A -model with ∞-groupoid structure based in the Scott’s -model D∞
title_sort A -model with ∞-groupoid structure based in the Scott’s -model D∞
author MARTÍNEZ RIVILLAS, Daniel Orlando
author_facet MARTÍNEZ RIVILLAS, Daniel Orlando
author_role author
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/1825502153580661
dc.contributor.author.fl_str_mv MARTÍNEZ RIVILLAS, Daniel Orlando
dc.contributor.advisor1.fl_str_mv QUEIROZ, José Guerra Barretto de
contributor_str_mv QUEIROZ, José Guerra Barretto de
dc.subject.por.fl_str_mv Teoria da computação
Cálculo lambda
topic Teoria da computação
Cálculo lambda
description The lambda calculus is a universal programming language that represents the functions computable from the point of view of the functions as a rule, that allow the evaluation of a function on any other function. This language can be seen as a theory, with certain pre-established axioms and inference rules, which can be represented by models. Dana Scott proposed the first non-trivial model of the extensional lambda calculus, known as ∞, in order to represent the -terms as the typical functions of set theory, where it is not allowed to evaluate a function about itself. This thesis propose a construction of an ∞-groupoid from any lambda model endowed with a topology. We apply this construction for the particular case ∞ and we observe that the Scott topology does not provide relevant information about of the relation between higher equivalences. This motivates the search for a new line of research focused on the exploration of -models with the structure of a non-trivial ∞-groupoid to generalize the proofs of term conversion (e.g., -equality, -equality) to higher proof in -calculus.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-11-09T21:32:03Z
dc.date.available.fl_str_mv 2020-11-09T21:32:03Z
dc.date.issued.fl_str_mv 2020-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MARTÍNEZ RIVILLAS, Daniel Orlando. A -model with ∞-groupoid structure based in the Scott’s -model D∞. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/38554
identifier_str_mv MARTÍNEZ RIVILLAS, Daniel Orlando. A -model with ∞-groupoid structure based in the Scott’s -model D∞. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020.
url https://repositorio.ufpe.br/handle/123456789/38554
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/38554/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/38554/1/DISSERTA%c3%87%c3%83O%20Daniel%20Orlando%20Mart%c3%adnez%20Rivillas.pdf
https://repositorio.ufpe.br/bitstream/123456789/38554/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/38554/4/DISSERTA%c3%87%c3%83O%20Daniel%20Orlando%20Mart%c3%adnez%20Rivillas.pdf.jpg
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
eef4ed6e961cb7fc4c1684d4578e34ff
bd573a5ca8288eb7272482765f819534
2c392246123949c6a100747e49dd7243
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1813709189284888576