A -model with ∞-groupoid structure based in the Scott’s -model D∞
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/38554 |
Resumo: | The lambda calculus is a universal programming language that represents the functions computable from the point of view of the functions as a rule, that allow the evaluation of a function on any other function. This language can be seen as a theory, with certain pre-established axioms and inference rules, which can be represented by models. Dana Scott proposed the first non-trivial model of the extensional lambda calculus, known as ∞, in order to represent the -terms as the typical functions of set theory, where it is not allowed to evaluate a function about itself. This thesis propose a construction of an ∞-groupoid from any lambda model endowed with a topology. We apply this construction for the particular case ∞ and we observe that the Scott topology does not provide relevant information about of the relation between higher equivalences. This motivates the search for a new line of research focused on the exploration of -models with the structure of a non-trivial ∞-groupoid to generalize the proofs of term conversion (e.g., -equality, -equality) to higher proof in -calculus. |
id |
UFPE_ea90c2f2b3dfa1a37040914200874b97 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/38554 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
|
spelling |
MARTÍNEZ RIVILLAS, Daniel Orlandohttp://lattes.cnpq.br/1825502153580661QUEIROZ, José Guerra Barretto de2020-11-09T21:32:03Z2020-11-09T21:32:03Z2020-02-28MARTÍNEZ RIVILLAS, Daniel Orlando. A -model with ∞-groupoid structure based in the Scott’s -model D∞. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38554The lambda calculus is a universal programming language that represents the functions computable from the point of view of the functions as a rule, that allow the evaluation of a function on any other function. This language can be seen as a theory, with certain pre-established axioms and inference rules, which can be represented by models. Dana Scott proposed the first non-trivial model of the extensional lambda calculus, known as ∞, in order to represent the -terms as the typical functions of set theory, where it is not allowed to evaluate a function about itself. This thesis propose a construction of an ∞-groupoid from any lambda model endowed with a topology. We apply this construction for the particular case ∞ and we observe that the Scott topology does not provide relevant information about of the relation between higher equivalences. This motivates the search for a new line of research focused on the exploration of -models with the structure of a non-trivial ∞-groupoid to generalize the proofs of term conversion (e.g., -equality, -equality) to higher proof in -calculus.O cálculo lambda é uma linguagem de programação universal que representa as funções computáveis do ponto de vista das funções como regra, que permitem a avaliação de uma função em qualquer outra função. Essa linguagem pode ser vista como uma teoria, com certos axiomas e regras de inferência pré-estabelecidos, que podem ser representados por modelos. Dana Scott propôs o primeiro modelo não-trivial do cálculo lambda extensional, conhecido como ∞, para representar os -termos como as funções típicas da teoria dos conjuntos, onde não é permitido avaliar uma função sobre si mesmo. Esta tese propõe a construção de um ∞-groupoid a partir de qualquer modelo lambda dotado de uma topologia. Aplicamos esta construção para o caso particular ∞ e observamos que a topologia Scott não fornece informações relevantes sobre a relação entre equivalências superiores. Isso motiva uma nova linha de pesquisa focada na exploração de -modelos com a estrutura de um ∞-groupoide não trivial para generalizar as provas de conversão de termos (e.g., -igualdade, -equalidade) à provas do ordem superior em -calculus.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessTeoria da computaçãoCálculo lambdaA -model with ∞-groupoid structure based in the Scott’s -model D∞info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/38554/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALDISSERTAÇÃO Daniel Orlando Martínez Rivillas.pdfDISSERTAÇÃO Daniel Orlando Martínez Rivillas.pdfapplication/pdf1796691https://repositorio.ufpe.br/bitstream/123456789/38554/1/DISSERTA%c3%87%c3%83O%20Daniel%20Orlando%20Mart%c3%adnez%20Rivillas.pdfeef4ed6e961cb7fc4c1684d4578e34ffMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/38554/3/license.txtbd573a5ca8288eb7272482765f819534MD53THUMBNAILDISSERTAÇÃO Daniel Orlando Martínez Rivillas.pdf.jpgDISSERTAÇÃO Daniel Orlando Martínez Rivillas.pdf.jpgGenerated Thumbnailimage/jpeg1162https://repositorio.ufpe.br/bitstream/123456789/38554/4/DISSERTA%c3%87%c3%83O%20Daniel%20Orlando%20Mart%c3%adnez%20Rivillas.pdf.jpg2c392246123949c6a100747e49dd7243MD54123456789/385542020-11-10 02:16:17.702oai:repositorio.ufpe.br:123456789/38554TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-11-10T05:16:17Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
title |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
spellingShingle |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ MARTÍNEZ RIVILLAS, Daniel Orlando Teoria da computação Cálculo lambda |
title_short |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
title_full |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
title_fullStr |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
title_full_unstemmed |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
title_sort |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
author |
MARTÍNEZ RIVILLAS, Daniel Orlando |
author_facet |
MARTÍNEZ RIVILLAS, Daniel Orlando |
author_role |
author |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/1825502153580661 |
dc.contributor.author.fl_str_mv |
MARTÍNEZ RIVILLAS, Daniel Orlando |
dc.contributor.advisor1.fl_str_mv |
QUEIROZ, José Guerra Barretto de |
contributor_str_mv |
QUEIROZ, José Guerra Barretto de |
dc.subject.por.fl_str_mv |
Teoria da computação Cálculo lambda |
topic |
Teoria da computação Cálculo lambda |
description |
The lambda calculus is a universal programming language that represents the functions computable from the point of view of the functions as a rule, that allow the evaluation of a function on any other function. This language can be seen as a theory, with certain pre-established axioms and inference rules, which can be represented by models. Dana Scott proposed the first non-trivial model of the extensional lambda calculus, known as ∞, in order to represent the -terms as the typical functions of set theory, where it is not allowed to evaluate a function about itself. This thesis propose a construction of an ∞-groupoid from any lambda model endowed with a topology. We apply this construction for the particular case ∞ and we observe that the Scott topology does not provide relevant information about of the relation between higher equivalences. This motivates the search for a new line of research focused on the exploration of -models with the structure of a non-trivial ∞-groupoid to generalize the proofs of term conversion (e.g., -equality, -equality) to higher proof in -calculus. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-11-09T21:32:03Z |
dc.date.available.fl_str_mv |
2020-11-09T21:32:03Z |
dc.date.issued.fl_str_mv |
2020-02-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MARTÍNEZ RIVILLAS, Daniel Orlando. A -model with ∞-groupoid structure based in the Scott’s -model D∞. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/38554 |
identifier_str_mv |
MARTÍNEZ RIVILLAS, Daniel Orlando. A -model with ∞-groupoid structure based in the Scott’s -model D∞. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020. |
url |
https://repositorio.ufpe.br/handle/123456789/38554 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/38554/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/38554/1/DISSERTA%c3%87%c3%83O%20Daniel%20Orlando%20Mart%c3%adnez%20Rivillas.pdf https://repositorio.ufpe.br/bitstream/123456789/38554/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/38554/4/DISSERTA%c3%87%c3%83O%20Daniel%20Orlando%20Mart%c3%adnez%20Rivillas.pdf.jpg |
bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 eef4ed6e961cb7fc4c1684d4578e34ff bd573a5ca8288eb7272482765f819534 2c392246123949c6a100747e49dd7243 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1813709189284888576 |