An approach for consensual analysis on typical hesitant fuzzy sets via extended aggregations and fuzzy implications based on admissible orders

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Matzenauer, Mônica Lorea
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Centro de Desenvolvimento Tecnológico
Programa de Pós-Graduação em Computação
UFPel
Brasil
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://guaiaca.ufpel.edu.br/handle/prefix/7943
Resumo: The Typical Hesitant Fuzzy Logic (THFL) is founded on the theory of the Typical Hesitant Fuzzy Sets (THFS), which are defined by considering as membership degrees the finite and non-empty subsets of the unit interval, which are called as Typical Hesitant Fuzzy Elements (THFE). In such logical approach, not only a number but also subintervals, in the unitary interval are also THFE-representations, which can be applied in the decision-making process based on multiple criteria involving many specialists (ME-MCDM). In this context, THFL provides the modelling for situations where there exists not only data uncertainty, but also indecision or hesitation among experts about the possible values for preferences regarding collections of objects. In order to reduce the information collapse for comparison and/or ranking of alternatives in the preference relationships, this thesis firstly develops new ideas about THFL’s logical connectives, which are investigated within the scope of three admissible orders. In the set H of all hesitant fuzzy values, consider: (i) the lexicographic orders hH; Lex1i and hH; Lex2i, related to the occurrence of the smallest/largest element in an ascending/descending ordered THFS, respectively; (ii) the relevant class of order hH; Ai, satisfying the injective cardinality property. In particular, properties of negations and aggregations are studied, as t-norms and OWA operators, with special interest in the axiomatic structures defining the implications and preserving their algebraic properties and representability. Thus, these theoretical results are submitted to the ME-MCDM problem, in order to select the better support for multiple software alternatives. As a main contribution, in this thesis, we discuss consensus measures on THFE and present a model that formally builds consensus measures through extended aggregation functions and fuzzy negation, using admissible orders for comparison and further, differentiating an analysis of consistency over preference matrices. The action of automorphisms provides the generation of new conjugate operators, preserving the main consensual properties as proposed in the Beliakov’s research, including unanimity, minimum consensus, maximum dissension, symmetry and invariance for replication. The new CCAI-method is presented, by applying admissible orders and promoting the use of fuzzy consensus measures based on multi-valued fuzzy logics, and, then, this work enables comparisons even between THFE with different cardinalities. These new theoretical results are then applied to another ME-MCDM problem, obtaining CCAI-consensus in a group of experts which consider typical hesitant fuzzy sets to provide classifications for multiple styles of craft beers.
id UFPL_e86abbe288ec928957272d88d7907213
oai_identifier_str oai:guaiaca.ufpel.edu.br:prefix/7943
network_acronym_str UFPL
network_name_str Repositório Institucional da UFPel - Guaiaca
repository_id_str
spelling An approach for consensual analysis on typical hesitant fuzzy sets via extended aggregations and fuzzy implications based on admissible ordersUma abordagem para análise consensual de conjuntos fuzzy hesitantes típicos via agregações estendidas e implicações fuzzy com base em ordens admissíveisComputaçãoConjuntos Fuzzy hesitantes típicosMedidas de consensoImplicações FuzzyAgregações estendidasOrdens admissíveisTypical hesitant Fuzzy setsConsensus measuresFuzzy implicationsExtended aggregationsAdmissible ordersCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOThe Typical Hesitant Fuzzy Logic (THFL) is founded on the theory of the Typical Hesitant Fuzzy Sets (THFS), which are defined by considering as membership degrees the finite and non-empty subsets of the unit interval, which are called as Typical Hesitant Fuzzy Elements (THFE). In such logical approach, not only a number but also subintervals, in the unitary interval are also THFE-representations, which can be applied in the decision-making process based on multiple criteria involving many specialists (ME-MCDM). In this context, THFL provides the modelling for situations where there exists not only data uncertainty, but also indecision or hesitation among experts about the possible values for preferences regarding collections of objects. In order to reduce the information collapse for comparison and/or ranking of alternatives in the preference relationships, this thesis firstly develops new ideas about THFL’s logical connectives, which are investigated within the scope of three admissible orders. In the set H of all hesitant fuzzy values, consider: (i) the lexicographic orders hH; Lex1i and hH; Lex2i, related to the occurrence of the smallest/largest element in an ascending/descending ordered THFS, respectively; (ii) the relevant class of order hH; Ai, satisfying the injective cardinality property. In particular, properties of negations and aggregations are studied, as t-norms and OWA operators, with special interest in the axiomatic structures defining the implications and preserving their algebraic properties and representability. Thus, these theoretical results are submitted to the ME-MCDM problem, in order to select the better support for multiple software alternatives. As a main contribution, in this thesis, we discuss consensus measures on THFE and present a model that formally builds consensus measures through extended aggregation functions and fuzzy negation, using admissible orders for comparison and further, differentiating an analysis of consistency over preference matrices. The action of automorphisms provides the generation of new conjugate operators, preserving the main consensual properties as proposed in the Beliakov’s research, including unanimity, minimum consensus, maximum dissension, symmetry and invariance for replication. The new CCAI-method is presented, by applying admissible orders and promoting the use of fuzzy consensus measures based on multi-valued fuzzy logics, and, then, this work enables comparisons even between THFE with different cardinalities. These new theoretical results are then applied to another ME-MCDM problem, obtaining CCAI-consensus in a group of experts which consider typical hesitant fuzzy sets to provide classifications for multiple styles of craft beers.Sem bolsaA Lógica Fuzzy Hesitante Típica (LFHT) está fundamentada na teoria dos Conjuntos Fuzzy Hesitantes Típicos (CFHT), os quais consideram como graus de pertinência os subconjuntos finitos e não vazios do intervalo unitário, chamados Elementos Fuzzy Hesitantes Típicos (EFHT). Nessa abordagem lógica, não apenas um número mas também subintervalos no intervalo unitário são também representações para EFHT, e podem ser aplicados no processo de tomada de decisão baseada em múltiplos critérios envolvendo muitos especialistas (TDMC-ME). Neste contexto, a LFHT provê a modelagem de situações onde ocorre não apenas incerteza de dados, mas também indecisão ou hesitação entre especialistas sobre os possíveis valores atribuídos às preferências referentes a coleções de objetos. Visando reduzir o colapso de informações para comparação e ranqueamento de alternativas nas relações de preferência, esta tese, primeiramente, desenvolve novas ideias sobre os conetivos lógicos da LFHT, as quais são investigadas no âmbito de três ordens admissíveis: (i) as ordens lexicográficas denominadas hH; Lex1i e hH; Lex2i, relacionadas a ocorrência do menor/maior elemento em um CFHT ordenado de forma crescente e decrescente, respectivamente; (ii) a classe relevante das ordens hH; i, satisfazendo a propriedade de cardinalidade injectiva. Estudamos propriedades das negações e agregações, como as t-normas e operadores OWA são considerados, com especial interesse nas estruturas axiomáticas que definem as implicações e preservam suas propriedades algébricas e representabilidade. Estes estudos teóricos são aplicados a problemas TDMC-ME, para seleção de suporte a múltiplas alternativas de software. Como principal contribuição, introduzimos uma análise consenso sobre EFHT que formalmente contrói medidas de consenso por meio de funções de agregação estendidas, implicações e negações fuzzy. Usamos ordens admissíveis para comparação e, ainda, fornecendo uma análise de consistência sobre matrizes de preferência. A ação de automorfismos mostra-se oportuna para geração de novos operadores, preservando as principais propriedades consensuais que incluem unanimidade, consenso mínimo, dissensão máxima, simetria e invariância para replicação. O modelo CCAI aplica ordens admissíveis para promover o uso de medidas de consenso fuzzy, viabilizando comparações mesmo entre EFHT com cardinalidades diferentes. E ainda, o CCAI-método é aplicado na análise consensual, via grupo de especialistas que consideram conjuntos fuzzy hesitantes típicos e fornecem classificações para múltiplos estilos de cervejas artesanais.Universidade Federal de PelotasCentro de Desenvolvimento TecnológicoPrograma de Pós-Graduação em ComputaçãoUFPelBrasilhttp://lattes.cnpq.br/7105968884912136http://lattes.cnpq.br/3283691152621834Santos, HélidaReiser, Renata Hax SanderMatzenauer, Mônica Lorea2021-08-13T20:31:18Z2021-08-13T20:31:18Z2021-05-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfMATZENAUER, Mônica Lorea. Uma abordagem para análise consensual de conjuntos Fuzzy hesitantes típicos via agregações estendidas e implicações fuzzy com base em ordens admissíveis. Orientador: Renata Reiser. 2021. 107 f. Tese (Doutorado) – Programa de Pós-Graduação em Computação, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2021.http://guaiaca.ufpel.edu.br/handle/prefix/7943porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPel - Guaiacainstname:Universidade Federal de Pelotas (UFPEL)instacron:UFPEL2023-07-13T07:46:40Zoai:guaiaca.ufpel.edu.br:prefix/7943Repositório InstitucionalPUBhttp://repositorio.ufpel.edu.br/oai/requestrippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.bropendoar:2023-07-13T07:46:40Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)false
dc.title.none.fl_str_mv An approach for consensual analysis on typical hesitant fuzzy sets via extended aggregations and fuzzy implications based on admissible orders
Uma abordagem para análise consensual de conjuntos fuzzy hesitantes típicos via agregações estendidas e implicações fuzzy com base em ordens admissíveis
title An approach for consensual analysis on typical hesitant fuzzy sets via extended aggregations and fuzzy implications based on admissible orders
spellingShingle An approach for consensual analysis on typical hesitant fuzzy sets via extended aggregations and fuzzy implications based on admissible orders
Matzenauer, Mônica Lorea
Computação
Conjuntos Fuzzy hesitantes típicos
Medidas de consenso
Implicações Fuzzy
Agregações estendidas
Ordens admissíveis
Typical hesitant Fuzzy sets
Consensus measures
Fuzzy implications
Extended aggregations
Admissible orders
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short An approach for consensual analysis on typical hesitant fuzzy sets via extended aggregations and fuzzy implications based on admissible orders
title_full An approach for consensual analysis on typical hesitant fuzzy sets via extended aggregations and fuzzy implications based on admissible orders
title_fullStr An approach for consensual analysis on typical hesitant fuzzy sets via extended aggregations and fuzzy implications based on admissible orders
title_full_unstemmed An approach for consensual analysis on typical hesitant fuzzy sets via extended aggregations and fuzzy implications based on admissible orders
title_sort An approach for consensual analysis on typical hesitant fuzzy sets via extended aggregations and fuzzy implications based on admissible orders
author Matzenauer, Mônica Lorea
author_facet Matzenauer, Mônica Lorea
author_role author
dc.contributor.none.fl_str_mv http://lattes.cnpq.br/7105968884912136
http://lattes.cnpq.br/3283691152621834
Santos, Hélida
Reiser, Renata Hax Sander
dc.contributor.author.fl_str_mv Matzenauer, Mônica Lorea
dc.subject.por.fl_str_mv Computação
Conjuntos Fuzzy hesitantes típicos
Medidas de consenso
Implicações Fuzzy
Agregações estendidas
Ordens admissíveis
Typical hesitant Fuzzy sets
Consensus measures
Fuzzy implications
Extended aggregations
Admissible orders
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Computação
Conjuntos Fuzzy hesitantes típicos
Medidas de consenso
Implicações Fuzzy
Agregações estendidas
Ordens admissíveis
Typical hesitant Fuzzy sets
Consensus measures
Fuzzy implications
Extended aggregations
Admissible orders
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description The Typical Hesitant Fuzzy Logic (THFL) is founded on the theory of the Typical Hesitant Fuzzy Sets (THFS), which are defined by considering as membership degrees the finite and non-empty subsets of the unit interval, which are called as Typical Hesitant Fuzzy Elements (THFE). In such logical approach, not only a number but also subintervals, in the unitary interval are also THFE-representations, which can be applied in the decision-making process based on multiple criteria involving many specialists (ME-MCDM). In this context, THFL provides the modelling for situations where there exists not only data uncertainty, but also indecision or hesitation among experts about the possible values for preferences regarding collections of objects. In order to reduce the information collapse for comparison and/or ranking of alternatives in the preference relationships, this thesis firstly develops new ideas about THFL’s logical connectives, which are investigated within the scope of three admissible orders. In the set H of all hesitant fuzzy values, consider: (i) the lexicographic orders hH; Lex1i and hH; Lex2i, related to the occurrence of the smallest/largest element in an ascending/descending ordered THFS, respectively; (ii) the relevant class of order hH; Ai, satisfying the injective cardinality property. In particular, properties of negations and aggregations are studied, as t-norms and OWA operators, with special interest in the axiomatic structures defining the implications and preserving their algebraic properties and representability. Thus, these theoretical results are submitted to the ME-MCDM problem, in order to select the better support for multiple software alternatives. As a main contribution, in this thesis, we discuss consensus measures on THFE and present a model that formally builds consensus measures through extended aggregation functions and fuzzy negation, using admissible orders for comparison and further, differentiating an analysis of consistency over preference matrices. The action of automorphisms provides the generation of new conjugate operators, preserving the main consensual properties as proposed in the Beliakov’s research, including unanimity, minimum consensus, maximum dissension, symmetry and invariance for replication. The new CCAI-method is presented, by applying admissible orders and promoting the use of fuzzy consensus measures based on multi-valued fuzzy logics, and, then, this work enables comparisons even between THFE with different cardinalities. These new theoretical results are then applied to another ME-MCDM problem, obtaining CCAI-consensus in a group of experts which consider typical hesitant fuzzy sets to provide classifications for multiple styles of craft beers.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-13T20:31:18Z
2021-08-13T20:31:18Z
2021-05-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MATZENAUER, Mônica Lorea. Uma abordagem para análise consensual de conjuntos Fuzzy hesitantes típicos via agregações estendidas e implicações fuzzy com base em ordens admissíveis. Orientador: Renata Reiser. 2021. 107 f. Tese (Doutorado) – Programa de Pós-Graduação em Computação, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2021.
http://guaiaca.ufpel.edu.br/handle/prefix/7943
identifier_str_mv MATZENAUER, Mônica Lorea. Uma abordagem para análise consensual de conjuntos Fuzzy hesitantes típicos via agregações estendidas e implicações fuzzy com base em ordens admissíveis. Orientador: Renata Reiser. 2021. 107 f. Tese (Doutorado) – Programa de Pós-Graduação em Computação, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2021.
url http://guaiaca.ufpel.edu.br/handle/prefix/7943
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pelotas
Centro de Desenvolvimento Tecnológico
Programa de Pós-Graduação em Computação
UFPel
Brasil
publisher.none.fl_str_mv Universidade Federal de Pelotas
Centro de Desenvolvimento Tecnológico
Programa de Pós-Graduação em Computação
UFPel
Brasil
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPel - Guaiaca
instname:Universidade Federal de Pelotas (UFPEL)
instacron:UFPEL
instname_str Universidade Federal de Pelotas (UFPEL)
instacron_str UFPEL
institution UFPEL
reponame_str Repositório Institucional da UFPel - Guaiaca
collection Repositório Institucional da UFPel - Guaiaca
repository.name.fl_str_mv Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)
repository.mail.fl_str_mv rippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.br
_version_ 1845921024246284288