Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Amaral, Regiane Teodoro do
Orientador(a): Nascimento, Moysés
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://www.locus.ufv.br/handle/123456789/7178
Resumo: Um dos principais desafios da biologia molecular é medir e avaliar os perfis de expressão gênica em diferentes tecidos biológicos com o objetivo de entender os mecanismos de transformação molecular. O método RNA-Seq usa transcriptoma a partir de tecnologias de sequenciamentos de nova geração (SNG), utilizados para sequenciar cDNA que é derivado de uma amostra de RNA, e, assim, produzir milhões de sequenciamentos de leitura. Porém, apesar do custo dessas tecnologias vir diminuindo, é comum realizar experimentos com pouca ou nenhuma repetição. Assim, torna-se necessária a descoberta e o aprimoramento de metodologias estatísticas eficientes para a otimização das análises de dados gerados em plataformas de sequenciamento de genomas. O objetivo geral desse trabalho consistiu na comparação de metodologias estatísticas a fim de estudar o padrão de expressão gênica relacionado à quantificação desses genes conforme determinadas condições/tratamentos, em experimentos de RNA-Seq. Para a realização das análises utilizou-se um conjunto de dados simulados através do pacote TCC do R, com diferentes cenários, para comparar os métodos estatísticos DESeq e baySeq. Foram exploradas tecnologias de RNA-Seq do perfil de expressão gênica de um banco de dados contendo 1000 genes em duas condições, nos cenários com cinco repetições, três repetições, 2 repetições e sem repetição. Em um primeiro momento, tais dados foram analisados pelos dois métodos separadamente, comparando-se o efeito do número de repetições dentro de cada um. Em seguida, foi realizada a comparação entre os métodos, levando em conta também o número de repetições em cada cenário. De acordo com os resultados gerados nas análises não podemos afirmar que um método, entre os avaliados, é ótimo em todas as circunstâncias, pois o método de escolha para uma situação em particular depende das condições experimentais. No entanto, sob as condições utilizadas no desenvolver do experimento, o método abordado pelo baySeq foi o que apresentou um bom desempenho, nas combinações ocorridas entre os métodos e os tipos de genes analisados, ou seja, esse foi o método que obteve uma maior capacidade de identificação dos genes diferencialmente expressos.
id UFV_52757a443f9e0a388cd1414c5069d25d
oai_identifier_str oai:locus.ufv.br:123456789/7178
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str
spelling Peternelli, Luiz AlexandreNascimento, Ana Carolina CampanaSilva, Fabyano Fonseca eAmaral, Regiane Teodoro dohttp://lattes.cnpq.br/4354428554998516Nascimento, Moysés2016-01-20T08:05:24Z2016-01-20T08:05:24Z2015-02-27AMARAL, Regiane Teodoro do. Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq. 2015. 48 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2015.http://www.locus.ufv.br/handle/123456789/7178Um dos principais desafios da biologia molecular é medir e avaliar os perfis de expressão gênica em diferentes tecidos biológicos com o objetivo de entender os mecanismos de transformação molecular. O método RNA-Seq usa transcriptoma a partir de tecnologias de sequenciamentos de nova geração (SNG), utilizados para sequenciar cDNA que é derivado de uma amostra de RNA, e, assim, produzir milhões de sequenciamentos de leitura. Porém, apesar do custo dessas tecnologias vir diminuindo, é comum realizar experimentos com pouca ou nenhuma repetição. Assim, torna-se necessária a descoberta e o aprimoramento de metodologias estatísticas eficientes para a otimização das análises de dados gerados em plataformas de sequenciamento de genomas. O objetivo geral desse trabalho consistiu na comparação de metodologias estatísticas a fim de estudar o padrão de expressão gênica relacionado à quantificação desses genes conforme determinadas condições/tratamentos, em experimentos de RNA-Seq. Para a realização das análises utilizou-se um conjunto de dados simulados através do pacote TCC do R, com diferentes cenários, para comparar os métodos estatísticos DESeq e baySeq. Foram exploradas tecnologias de RNA-Seq do perfil de expressão gênica de um banco de dados contendo 1000 genes em duas condições, nos cenários com cinco repetições, três repetições, 2 repetições e sem repetição. Em um primeiro momento, tais dados foram analisados pelos dois métodos separadamente, comparando-se o efeito do número de repetições dentro de cada um. Em seguida, foi realizada a comparação entre os métodos, levando em conta também o número de repetições em cada cenário. De acordo com os resultados gerados nas análises não podemos afirmar que um método, entre os avaliados, é ótimo em todas as circunstâncias, pois o método de escolha para uma situação em particular depende das condições experimentais. No entanto, sob as condições utilizadas no desenvolver do experimento, o método abordado pelo baySeq foi o que apresentou um bom desempenho, nas combinações ocorridas entre os métodos e os tipos de genes analisados, ou seja, esse foi o método que obteve uma maior capacidade de identificação dos genes diferencialmente expressos.One of the main challenges of molecular biology is to measure and assess the gene expression profiles in different biological tissues in order to understand the molecular mechanisms of transformation. The method uses RNA Seq transcriptome from Young generation sequencing technologies (NGS), used to sequence the cDNA which is derived from an RNA sample, and thus produce millions of reading sequencing. However, despite the cost of these technologies come decreasing, it is common experiment with little or no repetition. Thus, it becomes necessary discovery and improvement of efficient statistical methods to optimize the data analysis generated genome sequencing platforms. The aim of this study was to compare statistical methodologies to study the pattern of gene expression related to the quantification of these genes as certain conditions / treatments in RNA-Seq experiments. To carry out the analysis used a set of simulated data via the R TCC package with different scenarios to compare the statistical methods DESeq and baySeq. RNA-Seq technology of gene expression profile of a database containing 1000 genes were explored in two groups, in scenarios with five repetitions, three replicates, 2 repetitions and without repetition. At first, these data were analyzed by two methods separately, comparing the effect of the number of repetitions within each. Then, the comparison between the methods was carried out, taking into account also the number of repetitions in each scenario. According to the results generated in the analyzes can not be said that a method, among the evaluated, is great in all circumstances, as the method of choice for a particular situation depends on the experimental conditions. However, under the conditions used in developing the experiment, the method was approached by baySeq which performed well, in combinations that occurred between the methods and the types of genes analyzed, that is, that was the method that obtained a greater capacity Identification of differentially expressed genes.Fundação de Amparo à Pesquisa do Estado de Minas GeraisporUniversidade Federal de ViçosaEstatística aplicadaBiometriaBiologia molecular - Métodos estatísticosTranscriptomaRegulação de expressão gênicaCiências AgráriasNúmero de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-SeqNumber of repetitions in identifying differentially expressed genes in RNA-Seq experimentsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de EstatísticaMestre em Estatística Aplicada e BiometriaViçosa - MG2015-02-27Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf603500https://locus.ufv.br//bitstream/123456789/7178/1/texto%20completo.pdf433189cac3305d7e763e298611ad0d96MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/7178/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain103238https://locus.ufv.br//bitstream/123456789/7178/3/texto%20completo.pdf.txtab9ada181182e0e9d1bfc2a48c717d57MD53THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3652https://locus.ufv.br//bitstream/123456789/7178/4/texto%20completo.pdf.jpgad35a70c48fd23580ae4646e9620e82dMD54123456789/71782016-04-11 23:16:49.41oai:locus.ufv.br:123456789/7178Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-12T02:16:49LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq
dc.title.en.fl_str_mv Number of repetitions in identifying differentially expressed genes in RNA-Seq experiments
title Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq
spellingShingle Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq
Amaral, Regiane Teodoro do
Estatística aplicada
Biometria
Biologia molecular - Métodos estatísticos
Transcriptoma
Regulação de expressão gênica
Ciências Agrárias
title_short Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq
title_full Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq
title_fullStr Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq
title_full_unstemmed Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq
title_sort Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq
author Amaral, Regiane Teodoro do
author_facet Amaral, Regiane Teodoro do
author_role author
dc.contributor.authorLattes.pt-BR.fl_str_mv http://lattes.cnpq.br/4354428554998516
dc.contributor.none.fl_str_mv Peternelli, Luiz Alexandre
Nascimento, Ana Carolina Campana
Silva, Fabyano Fonseca e
dc.contributor.author.fl_str_mv Amaral, Regiane Teodoro do
dc.contributor.advisor1.fl_str_mv Nascimento, Moysés
contributor_str_mv Nascimento, Moysés
dc.subject.pt-BR.fl_str_mv Estatística aplicada
Biometria
Biologia molecular - Métodos estatísticos
Transcriptoma
Regulação de expressão gênica
topic Estatística aplicada
Biometria
Biologia molecular - Métodos estatísticos
Transcriptoma
Regulação de expressão gênica
Ciências Agrárias
dc.subject.cnpq.fl_str_mv Ciências Agrárias
description Um dos principais desafios da biologia molecular é medir e avaliar os perfis de expressão gênica em diferentes tecidos biológicos com o objetivo de entender os mecanismos de transformação molecular. O método RNA-Seq usa transcriptoma a partir de tecnologias de sequenciamentos de nova geração (SNG), utilizados para sequenciar cDNA que é derivado de uma amostra de RNA, e, assim, produzir milhões de sequenciamentos de leitura. Porém, apesar do custo dessas tecnologias vir diminuindo, é comum realizar experimentos com pouca ou nenhuma repetição. Assim, torna-se necessária a descoberta e o aprimoramento de metodologias estatísticas eficientes para a otimização das análises de dados gerados em plataformas de sequenciamento de genomas. O objetivo geral desse trabalho consistiu na comparação de metodologias estatísticas a fim de estudar o padrão de expressão gênica relacionado à quantificação desses genes conforme determinadas condições/tratamentos, em experimentos de RNA-Seq. Para a realização das análises utilizou-se um conjunto de dados simulados através do pacote TCC do R, com diferentes cenários, para comparar os métodos estatísticos DESeq e baySeq. Foram exploradas tecnologias de RNA-Seq do perfil de expressão gênica de um banco de dados contendo 1000 genes em duas condições, nos cenários com cinco repetições, três repetições, 2 repetições e sem repetição. Em um primeiro momento, tais dados foram analisados pelos dois métodos separadamente, comparando-se o efeito do número de repetições dentro de cada um. Em seguida, foi realizada a comparação entre os métodos, levando em conta também o número de repetições em cada cenário. De acordo com os resultados gerados nas análises não podemos afirmar que um método, entre os avaliados, é ótimo em todas as circunstâncias, pois o método de escolha para uma situação em particular depende das condições experimentais. No entanto, sob as condições utilizadas no desenvolver do experimento, o método abordado pelo baySeq foi o que apresentou um bom desempenho, nas combinações ocorridas entre os métodos e os tipos de genes analisados, ou seja, esse foi o método que obteve uma maior capacidade de identificação dos genes diferencialmente expressos.
publishDate 2015
dc.date.issued.fl_str_mv 2015-02-27
dc.date.accessioned.fl_str_mv 2016-01-20T08:05:24Z
dc.date.available.fl_str_mv 2016-01-20T08:05:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv AMARAL, Regiane Teodoro do. Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq. 2015. 48 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2015.
dc.identifier.uri.fl_str_mv http://www.locus.ufv.br/handle/123456789/7178
identifier_str_mv AMARAL, Regiane Teodoro do. Número de repetições na identificação de genes diferencialmente expressos em experimentos de RNA-Seq. 2015. 48 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2015.
url http://www.locus.ufv.br/handle/123456789/7178
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/7178/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/7178/2/license.txt
https://locus.ufv.br//bitstream/123456789/7178/3/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/7178/4/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 433189cac3305d7e763e298611ad0d96
8a4605be74aa9ea9d79846c1fba20a33
ab9ada181182e0e9d1bfc2a48c717d57
ad35a70c48fd23580ae4646e9620e82d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213758459084800