Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Link de acesso: | http://repositorio.unb.br/handle/10482/10782 |
Resumo: | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas Departamento de Ciência da Computação, 2012. |
id |
UNB_b48bb68abf620bf7269a453f98515f18 |
---|---|
oai_identifier_str |
oai:repositorio2.unb.br:10482/10782 |
network_acronym_str |
UNB |
network_name_str |
Repositório Institucional da UnB |
repository_id_str |
|
spelling |
Silva, Tulio Conrado Campos daBerger, Pedro de Azevedo2012-06-22T11:53:59Z2012-06-22T11:53:59Z2012-06-222012-03-09SILVA, Tulio Conrado Campos da. Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado. 2012. xvii, 115 f., il. Dissertação (Mestrado em Informática)—Universidade de Brasília, Brasília, 2012.http://repositorio.unb.br/handle/10482/10782Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas Departamento de Ciência da Computação, 2012.Experimentos diversos no campo da Biologia Molecular revelaram que alguns tipos de ácido ribonucléico (RNA) podem estar diretamente envolvidos na expressão gênica e do fenótipo, alem de sua já conhecida função na síntese de proteínas. De modo geral, RNAs podem ser divididos em duas classes: RNA mensageiro (mRNA), que são traduzidos para proteínas, e RNA não codificador (ncRNA), que exerce papéis celulares importantes além de codificação de proteínas. Nos últimos anos, vários métodos computacionais baseados em diferentes teorias e modelos foram propostas para distinguir mRNA de ncRNA. Dentre os métodos mais atuais, destacam-se o uso de gramáticas estocásticas livres de contexto, informações termodinâmicas, teorias probabilíticas e algoritmos de aprendizado de máquina, sendo esses últimos abordagens muitos maleáveis e de menor complexidade. Particularmente, os métodos por aprendizado de máquina que utilizam redes neurais artificiais de treinamento não supervisionado constituem uma promissora linha de pesquisa, por sua grande plasticidade e capacidade de classificação do conjunto de dados de ncRNAs por critérios bem estabelecidos. Essa ultima técnica e extensivamente abordada no presente trabalho, mais precisamente utilizando Mapa Auto Organiz avel (SOM), Learning Vector Quantization (LVQ) e as redes Teoria da Ressonância Adaptativa (ART), para o problema de distinguir ncRNAs de mRNAs em um dado transcriptoma. As acuracias obtidas para as duas abordagens, em teste, ou estudo de caso, realizado com pequenos ncRNAs de 4 organismos logeneticamente distantes atingiram 98%. Os critérios para classificação de ncRNA foram otimizados através da Análise de Componentes Principais (PCA), reduzindo o numero de suas variáveis em 32% sem reduzir a acurácia obtida no estudo de caso. _________________________________________________________________________________ ABSTRACTSeveral experiments conducted in the Molecular Biology eld have shown that some types of RNA may control gene expression and phenotype by themselves, besides their traditional role of allowing protein synthesis. Roughly speaking, RNA can be divided into two classes: messenger RNA (mRNA), that are translated into proteins, and non-coding RNA (ncRNA), which play several important cellular roles besides protein coding. In recent years, many computational methods based on deferent theories and models have been proposed to distinguish mRNA from ncRNA. Among the newest methods, it is noteworthy the use of stochastic context free grammars, thermodynamical information, probabilistic theories and machine learning algorithms, which are very adaptive and lowcomplexity approaches. Particularly, machine learning methods that uses non-supervised learning articial neural networks are a promising research eld, for they are highly plastic and are able to classify ncRNA data using well established criteria. The present work extensively approaches the latter technique, particularly Self-Organizing Maps (SOM), Learning Vector Quantization (LVQ) and Adaptive Resonance Theory (ART) algorithms for distinguishing ncRNA from coding RNA in a given transcriptome. A test case was developed using biological data from 4 phylogenetically distant organisms. Using this test case, the trained networks achieved 98% accuracy. The classication criteria used by the developed methods have been further optimized using Principal Components Analysis (PCA), reducing 32% of the number of extracted numerical variables without reducing the assessed accuracy.Instituto de Ciências Exatas (IE)Departamento de Ciência da Computação (IE CIC)Programa de Pós-Graduação em InformáticaIdentificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisRedes neurais (Computação)Inteligência artificialBiologia computacionalinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNBORIGINAL2012_TulioConradoCamposdaSilva.pdf2012_TulioConradoCamposdaSilva.pdfapplication/pdf4592113http://repositorio2.unb.br/jspui/bitstream/10482/10782/1/2012_TulioConradoCamposdaSilva.pdfaec465e9c017ed15dd0f0c16eef5d9deMD51open accessLICENSElicense.txtlicense.txttext/plain758http://repositorio2.unb.br/jspui/bitstream/10482/10782/2/license.txt162febf0452fbbc089dcc71db83b672eMD52open accessTEXT2012_TulioConradoCamposdaSilva.pdf.txt2012_TulioConradoCamposdaSilva.pdf.txtExtracted texttext/plain344762http://repositorio2.unb.br/jspui/bitstream/10482/10782/3/2012_TulioConradoCamposdaSilva.pdf.txtc6f1340cb121c5a25da31e60a2b103fdMD53open access10482/107822024-03-14 12:41:00.992open accessoai:repositorio2.unb.br:10482/10782TGljZW5zZSBncmFudGVkIGJ5IEVsbmEgQXJhw7pqbyAoZWxuYUBiY2UudW5iLmJyKSBvbiAyMDEyLTA2LTIxVDIxOjMxOjIxWiAoR01UKToKCkEgY29uY2Vzc8OjbyBkYSBsaWNlbsOnYSBkZXN0YSBjb2xlw6fDo28gcmVmZXJlLXNlIGFvIHRlcm1vIGRlIGF1dG9yaXphw6fDo28gaW1wcmVzc28gYXNzaW5hZG8gDQpwZWxvIGF1dG9yIGNvbSBhcyBzZWd1aW50ZXMgY29uZGnDp8O1ZXM6DQoNCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBkYSBwdWJsaWNhw6fDo28sIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIGRlIEJyYXPDrWxpYQ0KIGUgbyBJQklDVCBhIGRpc3BvbmliaWxpemFyIHBvciBtZWlvIGRvcyBzaXRlcyB3d3cuYmNlLnVuYi5iciwgd3d3LmliaWN0LmJyLA0KIGh0dHA6Ly9oZXJjdWxlcy52dGxzLmNvbS9jZ2ktYmluL25kbHRkL2NoYW1lbGVvbj9sbmc9cHQmc2tpbj1uZGx0ZCBzZW0gcmVzc2FyY2ltZW50byBkb3MgDQpkaXJlaXRvcyBhdXRvcmFpcywgZGUgYWNvcmRvIGNvbSBhIExlaSBuwrogOTYxMC85OCwgbyB0ZXh0byBpbnRlZ3JhbCBkYSBvYnJhIGRpc3BvbmliaWxpemFkYSwNCiBjb25mb3JtZSBwZXJtaXNzw7VlcyBhc3NpbmFsYWRhcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCwgYSB0w610dWxvIGRlIA0KZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrWZpY2EgYnJhc2lsZWlyYSwgYSBwYXJ0aXIgZGVzdGEgZGF0YS4=Biblioteca Digital de Teses e DissertaçõesPUBhttps://repositorio.unb.br/oai/requestopendoar:2024-03-14T15:41Repositório Institucional da UnB - Universidade de Brasília (UnB)false |
dc.title.en.fl_str_mv |
Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado |
title |
Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado |
spellingShingle |
Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado Silva, Tulio Conrado Campos da Redes neurais (Computação) Inteligência artificial Biologia computacional |
title_short |
Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado |
title_full |
Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado |
title_fullStr |
Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado |
title_full_unstemmed |
Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado |
title_sort |
Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado |
author |
Silva, Tulio Conrado Campos da |
author_facet |
Silva, Tulio Conrado Campos da |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Tulio Conrado Campos da |
dc.contributor.advisor1.fl_str_mv |
Berger, Pedro de Azevedo |
contributor_str_mv |
Berger, Pedro de Azevedo |
dc.subject.keyword.en.fl_str_mv |
Redes neurais (Computação) Inteligência artificial Biologia computacional |
topic |
Redes neurais (Computação) Inteligência artificial Biologia computacional |
description |
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas Departamento de Ciência da Computação, 2012. |
publishDate |
2012 |
dc.date.submitted.none.fl_str_mv |
2012-03-09 |
dc.date.accessioned.fl_str_mv |
2012-06-22T11:53:59Z |
dc.date.available.fl_str_mv |
2012-06-22T11:53:59Z |
dc.date.issued.fl_str_mv |
2012-06-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Tulio Conrado Campos da. Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado. 2012. xvii, 115 f., il. Dissertação (Mestrado em Informática)—Universidade de Brasília, Brasília, 2012. |
dc.identifier.uri.fl_str_mv |
http://repositorio.unb.br/handle/10482/10782 |
identifier_str_mv |
SILVA, Tulio Conrado Campos da. Identificação de RNA não codificador utilizando redes neurais artificiais de treinamento não supervisionado. 2012. xvii, 115 f., il. Dissertação (Mestrado em Informática)—Universidade de Brasília, Brasília, 2012. |
url |
http://repositorio.unb.br/handle/10482/10782 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UnB instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Repositório Institucional da UnB |
collection |
Repositório Institucional da UnB |
bitstream.url.fl_str_mv |
http://repositorio2.unb.br/jspui/bitstream/10482/10782/1/2012_TulioConradoCamposdaSilva.pdf http://repositorio2.unb.br/jspui/bitstream/10482/10782/2/license.txt http://repositorio2.unb.br/jspui/bitstream/10482/10782/3/2012_TulioConradoCamposdaSilva.pdf.txt |
bitstream.checksum.fl_str_mv |
aec465e9c017ed15dd0f0c16eef5d9de 162febf0452fbbc089dcc71db83b672e c6f1340cb121c5a25da31e60a2b103fd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UnB - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
|
_version_ |
1801864379875983360 |