Contribuição à abordagem de problemas de classificação por redes convolucionais profundas
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
[s.n.]
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://hdl.handle.net/20.500.12733/1632886 |
Resumo: | Orientador: Christiano Lyra Filho |
id |
UNICAMP-30_aa7f8b68abd340127bbe5e4646333d29 |
---|---|
oai_identifier_str |
oai::991774 |
network_acronym_str |
UNICAMP-30 |
network_name_str |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) |
repository_id_str |
|
spelling |
Contribuição à abordagem de problemas de classificação por redes convolucionais profundasContribution to classification problems approach by deep convolutional networksRedes neurais (Computação)Aprendizado de máquinaNeural networks (Computing)Machine learningOrientador: Christiano Lyra FilhoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Deep learning, tema de pesquisa recente na área de machine learning, obteve sucesso na proposta de modelos para classificação de padrões com grande quantidade de rótulos, em inteligência artificial aplicada a jogos, em transcrições de falas, em traduções e em outros problemas computacionais de difícil solução. Grande parte desse destaque se deve às redes convolucionais, redes neurais especializadas em dados que possuem parâmetros que dependem de suas vizinhanças. Áudio e imagens são exemplos desses dados, pois os parâmetros só trazem informação quando avaliados em conjunto, formando padrões que possam ser reconhecidos. Esta tese desenvolve aplicações baseadas em redes convolucionais para identificação de padrões em áreas para as quais o uso de técnicas de machine learning são pouco exploradas. Especificamente, desenvolve sistemas para três diferentes tarefas de classificação: classificação de formatos de rostos, classificação de gêneros taxonômicos de formigas e classificação de filtros utilizados para manipulação de imagens. As principais contribuições resultantes do desenvolvimento dessas aplicações estão ligadas ao tratamento dos dados antes da fase de treinamento e à utilização dos resultados de diferentes modelos para aumentar as qualidades das classificações. Na primeira aplicação, os experimentos mostraram a possibilidade de direcionar o aprendizado através de alterações nos dados de entrada, auxiliando a compreensão e o controle das extrações de padrões que a rede utiliza no processo de aprendizado. A segunda aplicação mostra que é possível aumentar a robustez da classificação ao utilizar visões múltiplas (multiview) reforçadas com o recurso de ensemble. Na terceira aplicação foi desenvolvido uma metodologia para identificar as perdas de informações decorrentes da aplicação de filtros às imagens; além disso, foi desenvolvido uma metodologia para identificar qual o processo de manipulação com filtros foi aplicadoAbstract: Deep learning is a recent area of investigation in machine learning. It has received much interest for achieving good results in classification tasks, mainly with a large number of labels. The domain of applications include artificial intelligence applied to games, transcription of words, translation and other challenging computer problems. Most of the successful applications are based in convolutional networks, neural network architectures specialized in data with parameters that depend on interactions with neighbors. Audio and images are examples of such data, because their parameters only bring information when evaluated together, defining recognizable patterns. This thesis investigates applications of convolutional neural networks to identify hidden patterns in areas where the use of machine learning techniques has not been fully explored. Three different systems for classification tasks are developed: classification of face shapes, classification of taxonomy of genus ants and classification of filters used to manipulate images. The main contribution resulting from these projects concern the procedures for analyzing data before the training phase of the networks and the use of results with different models to enhance the quality of the classification output. The first project shows the possibility to use changes in the data input to guide the learning process. The second project shows that it is possible to increase the robustness of the classification by using multiview applied to ensemble. The third project develops a methodology for identifyingidentifying from the information loss from applying filters to images. Furthermore, it develops a methodology to identify which filtering process was applied to the imagesDoutoradoAutomaçãoDoutor em Engenharia ElétricaCNPQ141308/2014-1[s.n.]Lyra Filho, Christiano, 1951-Carvalho, André Carlos Ponce de Leon Ferreira deSilva, Alexandre Pinto Alves daAttux, Romis Ribeiro de FaissolBoccato, LevyUniversidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Elétrica e de ComputaçãoPrograma de Pós-Graduação em Engenharia ElétricaUNIVERSIDADE ESTADUAL DE CAMPINASMarques, Alan Caio Rodrigues, 1987-20182017-11-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdf1 recurso online (121 p.) : il., digital, arquivo PDF.https://hdl.handle.net/20.500.12733/1632886MARQUES, Alan Caio Rodrigues. Contribuição à abordagem de problemas de classificação por redes convolucionais profundas. 2018. 1 recurso online (121 p.) Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP. Disponível em: https://hdl.handle.net/20.500.12733/1632886. Acesso em: 3 set. 2024.https://repositorio.unicamp.br/acervo/detalhe/991774Requisitos do sistema: Software para leitura de arquivo em PDFporreponame:Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP)instname:Universidade Estadual de Campinas (UNICAMP)instacron:UNICAMPinfo:eu-repo/semantics/openAccess2018-03-13T18:05:52Zoai::991774Biblioteca Digital de Teses e DissertaçõesPUBhttp://repositorio.unicamp.br/oai/tese/oai.aspsbubd@unicamp.bropendoar:2018-03-13T18:05:52Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) - Universidade Estadual de Campinas (UNICAMP)false |
dc.title.none.fl_str_mv |
Contribuição à abordagem de problemas de classificação por redes convolucionais profundas Contribution to classification problems approach by deep convolutional networks |
title |
Contribuição à abordagem de problemas de classificação por redes convolucionais profundas |
spellingShingle |
Contribuição à abordagem de problemas de classificação por redes convolucionais profundas Marques, Alan Caio Rodrigues, 1987- Redes neurais (Computação) Aprendizado de máquina Neural networks (Computing) Machine learning |
title_short |
Contribuição à abordagem de problemas de classificação por redes convolucionais profundas |
title_full |
Contribuição à abordagem de problemas de classificação por redes convolucionais profundas |
title_fullStr |
Contribuição à abordagem de problemas de classificação por redes convolucionais profundas |
title_full_unstemmed |
Contribuição à abordagem de problemas de classificação por redes convolucionais profundas |
title_sort |
Contribuição à abordagem de problemas de classificação por redes convolucionais profundas |
author |
Marques, Alan Caio Rodrigues, 1987- |
author_facet |
Marques, Alan Caio Rodrigues, 1987- |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lyra Filho, Christiano, 1951- Carvalho, André Carlos Ponce de Leon Ferreira de Silva, Alexandre Pinto Alves da Attux, Romis Ribeiro de Faissol Boccato, Levy Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Elétrica e de Computação Programa de Pós-Graduação em Engenharia Elétrica UNIVERSIDADE ESTADUAL DE CAMPINAS |
dc.contributor.author.fl_str_mv |
Marques, Alan Caio Rodrigues, 1987- |
dc.subject.por.fl_str_mv |
Redes neurais (Computação) Aprendizado de máquina Neural networks (Computing) Machine learning |
topic |
Redes neurais (Computação) Aprendizado de máquina Neural networks (Computing) Machine learning |
description |
Orientador: Christiano Lyra Filho |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-30T00:00:00Z 2018 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/20.500.12733/1632886 MARQUES, Alan Caio Rodrigues. Contribuição à abordagem de problemas de classificação por redes convolucionais profundas. 2018. 1 recurso online (121 p.) Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP. Disponível em: https://hdl.handle.net/20.500.12733/1632886. Acesso em: 3 set. 2024. |
url |
https://hdl.handle.net/20.500.12733/1632886 |
identifier_str_mv |
MARQUES, Alan Caio Rodrigues. Contribuição à abordagem de problemas de classificação por redes convolucionais profundas. 2018. 1 recurso online (121 p.) Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP. Disponível em: https://hdl.handle.net/20.500.12733/1632886. Acesso em: 3 set. 2024. |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://repositorio.unicamp.br/acervo/detalhe/991774 Requisitos do sistema: Software para leitura de arquivo em PDF |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf 1 recurso online (121 p.) : il., digital, arquivo PDF. |
dc.publisher.none.fl_str_mv |
[s.n.] |
publisher.none.fl_str_mv |
[s.n.] |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) instname:Universidade Estadual de Campinas (UNICAMP) instacron:UNICAMP |
instname_str |
Universidade Estadual de Campinas (UNICAMP) |
instacron_str |
UNICAMP |
institution |
UNICAMP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) |
collection |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) - Universidade Estadual de Campinas (UNICAMP) |
repository.mail.fl_str_mv |
sbubd@unicamp.br |
_version_ |
1809189886001938432 |