Redes neurais atratoras com padrões que possuem atividade em grafos aleatórios

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Silveira, Alexandre
Orientador(a): Erichsen Junior, Rubem
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/164875
Resumo: Com o avanço das técnicas analíticas, tem sido possível estudadar redes neurais atratoras onde cada unidade de processamento é conectada com um número finito de vizinhos, sendo que esse número independe do tamanho do sistema. Aplicamos essas técnicas ao estudo de redes atratoras com padrões que possuem uma quebra de simetria sobre o número de bits ativos e quiscentes. O objetivo deste trabalho é estudar a capacidade da rede neural em armazenar padrões com atividade não nula, uma vez que a conectividade por neurônio é finita. Inicialmente, apresentamos os modelos predecessores de redes atratoras, como o modelo de Hopfield e os modelos de Amit, Gutfreund e Sompolinsky. Em tais modelos, o aprendizado é definido através de modificações sinápticas, inspiradas nas ideias de Hebb. Mostramos como é estimada a capacidade da rede. Mencionamos a introdução de uma função de energia para o sistema, que permite uma ligação com estudo de sistemas magnéticos através da mecânica estatística. Apresentamos também regras de aprendizado para lidar com padrões com atividade não nula. Num segundo momento, aplicamos o método de réplicas, utilizado para tratar sistemas desordenados, ao problema da rede atratora com conectividade e atividade dos padrões finitas. Utilizamos o formalismo de funções de ordem e fazemos uso do conceito de sub-redes, que permite particionar o grafo de acordo com os padrões a serem armazenados em cada neurônio. Obtemos, assim, uma função de ordem por sub-rede que contém toda informação sobre o estado do sistema. Aplicando o ansatz de simetria de réplicas, é possível derivar distribuições autoconsistentes dos campos locais para cada sub-rede. Tais distribuições passam a fornecer toda informação necessária para calcularmos os observáveis relevantes. As distribuições são calculadas numericamente a partir do método da dinâmica de populações. Em seguida, traçamos diagramas de fases para três regras de aprendizado. A partir desses, estimamos a capacidade, temperatura e atividade críticas. Observa-se a presença de fases de vidro de spin, transições decontínuas e pontos tricríticos.
id URGS_a8303b84a639f9a3fa45dc2281370c2e
oai_identifier_str oai:www.lume.ufrgs.br:10183/164875
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Silveira, AlexandreErichsen Junior, Rubem2017-08-05T02:45:00Z2017http://hdl.handle.net/10183/164875001027424Com o avanço das técnicas analíticas, tem sido possível estudadar redes neurais atratoras onde cada unidade de processamento é conectada com um número finito de vizinhos, sendo que esse número independe do tamanho do sistema. Aplicamos essas técnicas ao estudo de redes atratoras com padrões que possuem uma quebra de simetria sobre o número de bits ativos e quiscentes. O objetivo deste trabalho é estudar a capacidade da rede neural em armazenar padrões com atividade não nula, uma vez que a conectividade por neurônio é finita. Inicialmente, apresentamos os modelos predecessores de redes atratoras, como o modelo de Hopfield e os modelos de Amit, Gutfreund e Sompolinsky. Em tais modelos, o aprendizado é definido através de modificações sinápticas, inspiradas nas ideias de Hebb. Mostramos como é estimada a capacidade da rede. Mencionamos a introdução de uma função de energia para o sistema, que permite uma ligação com estudo de sistemas magnéticos através da mecânica estatística. Apresentamos também regras de aprendizado para lidar com padrões com atividade não nula. Num segundo momento, aplicamos o método de réplicas, utilizado para tratar sistemas desordenados, ao problema da rede atratora com conectividade e atividade dos padrões finitas. Utilizamos o formalismo de funções de ordem e fazemos uso do conceito de sub-redes, que permite particionar o grafo de acordo com os padrões a serem armazenados em cada neurônio. Obtemos, assim, uma função de ordem por sub-rede que contém toda informação sobre o estado do sistema. Aplicando o ansatz de simetria de réplicas, é possível derivar distribuições autoconsistentes dos campos locais para cada sub-rede. Tais distribuições passam a fornecer toda informação necessária para calcularmos os observáveis relevantes. As distribuições são calculadas numericamente a partir do método da dinâmica de populações. Em seguida, traçamos diagramas de fases para três regras de aprendizado. A partir desses, estimamos a capacidade, temperatura e atividade críticas. Observa-se a presença de fases de vidro de spin, transições decontínuas e pontos tricríticos.With the advance of analytical tools it has been possible to study attractor neural networks in which each processing unit is connected to a finite number of neighbours. Being that, the number of neighbours is independent of the size of the system. We apply these tools to the study of attractor networks in which the patterns have a broken symmetry with respect to the number of active and inactive bits. The objetive of this work is to study the capacity of the neural network to store patterns with activity different from zero, being that the conectivity per neuron is finite. First, we present the predecessor models of attractor networks like the Hopfield and Amit, Gutfreund e Sompolinsky ones. In such models the learning is defined through sinaptic modifications, inspired by Hebb’s ideas. We show how to estimate the storage capacity of the network. We mention the introduction of a energy function for the system, which allows a link with the study of magnetic systems through statistical machanics. We present learning rules to deal with patterns which have non zero activity. In the second part, we apply the replic method, utilized to deal with disordered systems to the problem of an attractor neural network with finite conectivity and activity. We utilized the formalism of order functions and the concept of sublattices, this concept allows to partition the graph according with the patterns to be stored in each neuron. This way, we obtain an order function per sublattice which contain all the information about the state of the system. Applying the replica symmetry ansatz it is possible to derive self-consistent distributions of the local fields per sublattice. Such distributions start to provide all the necessary information to calculate the relevant observables. These distributions are calculated numerically using the population dynamics method. Then, we draw phase diagrams for three learning rules. Using these, we estimate the storage capacity, the temperature and the critical activity. We observe the presence of spin glass phases, discontinuos phase transiotions and tricritical points.application/pdfporNeurôniosRedes neuraisSinapsesMemóriaModelos matemáticosRedes neurais atratoras com padrões que possuem atividade em grafos aleatóriosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de FísicaPrograma de Pós-Graduação em FísicaPorto Alegre, BR-RS2017mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001027424.pdf001027424.pdfTexto completoapplication/pdf1162910http://www.lume.ufrgs.br/bitstream/10183/164875/1/001027424.pdfc4186591967a641759f8545da21a87c3MD51TEXT001027424.pdf.txt001027424.pdf.txtExtracted Texttext/plain113830http://www.lume.ufrgs.br/bitstream/10183/164875/2/001027424.pdf.txtd6d7e797efc2fbff07f9a80072caecb1MD52THUMBNAIL001027424.pdf.jpg001027424.pdf.jpgGenerated Thumbnailimage/jpeg1216http://www.lume.ufrgs.br/bitstream/10183/164875/3/001027424.pdf.jpg160590fd51b59bda6097a4d59edc409eMD5310183/1648752018-10-19 10:22:51.612oai:www.lume.ufrgs.br:10183/164875Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-19T13:22:51Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Redes neurais atratoras com padrões que possuem atividade em grafos aleatórios
title Redes neurais atratoras com padrões que possuem atividade em grafos aleatórios
spellingShingle Redes neurais atratoras com padrões que possuem atividade em grafos aleatórios
Silveira, Alexandre
Neurônios
Redes neurais
Sinapses
Memória
Modelos matemáticos
title_short Redes neurais atratoras com padrões que possuem atividade em grafos aleatórios
title_full Redes neurais atratoras com padrões que possuem atividade em grafos aleatórios
title_fullStr Redes neurais atratoras com padrões que possuem atividade em grafos aleatórios
title_full_unstemmed Redes neurais atratoras com padrões que possuem atividade em grafos aleatórios
title_sort Redes neurais atratoras com padrões que possuem atividade em grafos aleatórios
author Silveira, Alexandre
author_facet Silveira, Alexandre
author_role author
dc.contributor.author.fl_str_mv Silveira, Alexandre
dc.contributor.advisor1.fl_str_mv Erichsen Junior, Rubem
contributor_str_mv Erichsen Junior, Rubem
dc.subject.por.fl_str_mv Neurônios
Redes neurais
Sinapses
Memória
Modelos matemáticos
topic Neurônios
Redes neurais
Sinapses
Memória
Modelos matemáticos
description Com o avanço das técnicas analíticas, tem sido possível estudadar redes neurais atratoras onde cada unidade de processamento é conectada com um número finito de vizinhos, sendo que esse número independe do tamanho do sistema. Aplicamos essas técnicas ao estudo de redes atratoras com padrões que possuem uma quebra de simetria sobre o número de bits ativos e quiscentes. O objetivo deste trabalho é estudar a capacidade da rede neural em armazenar padrões com atividade não nula, uma vez que a conectividade por neurônio é finita. Inicialmente, apresentamos os modelos predecessores de redes atratoras, como o modelo de Hopfield e os modelos de Amit, Gutfreund e Sompolinsky. Em tais modelos, o aprendizado é definido através de modificações sinápticas, inspiradas nas ideias de Hebb. Mostramos como é estimada a capacidade da rede. Mencionamos a introdução de uma função de energia para o sistema, que permite uma ligação com estudo de sistemas magnéticos através da mecânica estatística. Apresentamos também regras de aprendizado para lidar com padrões com atividade não nula. Num segundo momento, aplicamos o método de réplicas, utilizado para tratar sistemas desordenados, ao problema da rede atratora com conectividade e atividade dos padrões finitas. Utilizamos o formalismo de funções de ordem e fazemos uso do conceito de sub-redes, que permite particionar o grafo de acordo com os padrões a serem armazenados em cada neurônio. Obtemos, assim, uma função de ordem por sub-rede que contém toda informação sobre o estado do sistema. Aplicando o ansatz de simetria de réplicas, é possível derivar distribuições autoconsistentes dos campos locais para cada sub-rede. Tais distribuições passam a fornecer toda informação necessária para calcularmos os observáveis relevantes. As distribuições são calculadas numericamente a partir do método da dinâmica de populações. Em seguida, traçamos diagramas de fases para três regras de aprendizado. A partir desses, estimamos a capacidade, temperatura e atividade críticas. Observa-se a presença de fases de vidro de spin, transições decontínuas e pontos tricríticos.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-08-05T02:45:00Z
dc.date.issued.fl_str_mv 2017
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/164875
dc.identifier.nrb.pt_BR.fl_str_mv 001027424
url http://hdl.handle.net/10183/164875
identifier_str_mv 001027424
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/164875/1/001027424.pdf
http://www.lume.ufrgs.br/bitstream/10183/164875/2/001027424.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/164875/3/001027424.pdf.jpg
bitstream.checksum.fl_str_mv c4186591967a641759f8545da21a87c3
d6d7e797efc2fbff07f9a80072caecb1
160590fd51b59bda6097a4d59edc409e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810088926117888000