Structuring general and complete quantum computations in Haskell : the arrows approach

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Vizzotto, Juliana Kaizer
Orientador(a): Costa, Antonio Carlos da Rocha
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/13154
Resumo: Computaçãao quântica pode ser entendida como transformação da informação codificada no estado de um sistema físico quântico. A idéia básica da computação quântica é codificar dados utilizando bits quânticos (qubits). Diferentemente do bit clássico, o qubit pode existir em uma superposição dos seus estados básicos permitindo o “paralelismo quântico”, o qual é uma característica importante da computação quântica visto que pode aumentar consideravelmente a velocidade de processamento dos algoritmos. Entretanto, tipos de dados quânticos são bastante poderosos não somente por causa da superposição de estados. Existem outras propriedades ímpares como medida e emaranhamento. Nesta tese, nós discutimos que um modelo realístico para computações quânticas deve ser geral com respeito a medidas, e completo com respeito a comunicação entre o mundo quântico e o mundo clássico. Nós, então, explicamos e estruturamos computações quânticas gerais e completas em Haskell utilizando construções conhecidas da área de semântica e linguagens de programação clássicas, como mônadas e setas. Em mais detalhes, esta tese se concentra nas seguintes contribuições. Mônadas e Setas. Paralelismo quântico, emaranhamento e medida quântica certamente vão além do escopo de linguagens funcionais “puras”. Nós mostramos que o paralelismo quântico pode ser modelado utilizando-se uma pequena generalização de mônadas, chamada mônadas indexadas ou estruturas Kleisli. Além disso, nós mostramos que a medida quântica pode ser explicada utilizando-se uma generalização mais radical de mônadas, as assim chamadas setas, mais especificamente, setas indexadas, as quais definimos nesta tese. Este resultado conecta características quânticas “genéricas” e “completas” `a construções semânticas de linguagens de programação bem fundamentadas. Entendendo as Interpretações da Mecânica Quântica como Efeitos Computacionais. Em um experimento hipotético, Einstein, Podolsky e Rosen demonstraram algumas consequências contra-intuitivas da mecânica quântica. A idéia básica é que duas partículas parecem sempre comunicar alguma informação mesmo estando separadas por uma distância arbitrariamente grande. Existe muito debate e muitos artigos sobre esse tópico, mas é interessante notar que, como proposto por Amr Sabry, essas características estranhas podem ser essencialmente modeladas por atribuições a variáveis globais. Baseados nesta idéia nós modelamos este comportamento estranho utilizando noções gerais de efeitos computacionais incorporados nas noções de mônadas e setas. Provando Propriedades de Programas Quânticos Utilizando Leis Algébricas. Nós desenvolvemos um trabalho preliminar para fazer provas equacionais sobre algoritmos quânticos escritos em uma sublinguagem pura de uma linguagem de programação funcional quântica, chamada QML.
id URGS_b322887ac4b292d337a546f77d247716
oai_identifier_str oai:www.lume.ufrgs.br:10183/13154
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Vizzotto, Juliana KaizerCosta, Antonio Carlos da RochaSabry, Amr A.2008-06-14T04:11:12Z2006http://hdl.handle.net/10183/13154000633967Computaçãao quântica pode ser entendida como transformação da informação codificada no estado de um sistema físico quântico. A idéia básica da computação quântica é codificar dados utilizando bits quânticos (qubits). Diferentemente do bit clássico, o qubit pode existir em uma superposição dos seus estados básicos permitindo o “paralelismo quântico”, o qual é uma característica importante da computação quântica visto que pode aumentar consideravelmente a velocidade de processamento dos algoritmos. Entretanto, tipos de dados quânticos são bastante poderosos não somente por causa da superposição de estados. Existem outras propriedades ímpares como medida e emaranhamento. Nesta tese, nós discutimos que um modelo realístico para computações quânticas deve ser geral com respeito a medidas, e completo com respeito a comunicação entre o mundo quântico e o mundo clássico. Nós, então, explicamos e estruturamos computações quânticas gerais e completas em Haskell utilizando construções conhecidas da área de semântica e linguagens de programação clássicas, como mônadas e setas. Em mais detalhes, esta tese se concentra nas seguintes contribuições. Mônadas e Setas. Paralelismo quântico, emaranhamento e medida quântica certamente vão além do escopo de linguagens funcionais “puras”. Nós mostramos que o paralelismo quântico pode ser modelado utilizando-se uma pequena generalização de mônadas, chamada mônadas indexadas ou estruturas Kleisli. Além disso, nós mostramos que a medida quântica pode ser explicada utilizando-se uma generalização mais radical de mônadas, as assim chamadas setas, mais especificamente, setas indexadas, as quais definimos nesta tese. Este resultado conecta características quânticas “genéricas” e “completas” `a construções semânticas de linguagens de programação bem fundamentadas. Entendendo as Interpretações da Mecânica Quântica como Efeitos Computacionais. Em um experimento hipotético, Einstein, Podolsky e Rosen demonstraram algumas consequências contra-intuitivas da mecânica quântica. A idéia básica é que duas partículas parecem sempre comunicar alguma informação mesmo estando separadas por uma distância arbitrariamente grande. Existe muito debate e muitos artigos sobre esse tópico, mas é interessante notar que, como proposto por Amr Sabry, essas características estranhas podem ser essencialmente modeladas por atribuições a variáveis globais. Baseados nesta idéia nós modelamos este comportamento estranho utilizando noções gerais de efeitos computacionais incorporados nas noções de mônadas e setas. Provando Propriedades de Programas Quânticos Utilizando Leis Algébricas. Nós desenvolvemos um trabalho preliminar para fazer provas equacionais sobre algoritmos quânticos escritos em uma sublinguagem pura de uma linguagem de programação funcional quântica, chamada QML.Quantum computation can be understood as transformation of information encoded in the state of a quantum physical system. The basic idea behind quantum computation is to encode data using quantum bits (qubits). Differently from the classical bit, the qubit can be in a superposition of basic states leading to “quantum parallelism”, which is an important characteristic of quantum computation since it can greatly increase the speed processing of algorithms. However, quantum data types are computationally very powerful not only due to superposition. There are other odd properties like measurement and entangled. In this thesis we argue that a realistic model for quantum computations should be general with respect to measurements, and complete with respect to the information flow between the quantum and classical worlds. We thus explain and structure general and complete quantum programming in Haskell using well known constructions from classical semantics and programming languages, like monads and arrows. In more detail, this thesis focuses on the following contributions. Monads and Arrows. Quantum parallelism, entanglement, and measurement certainly go beyond “pure” functional programming. We have shown that quantum parallelism can be modelled using a slightly generalisation of monads called indexed monads, or Kleisli structures. We have also build on this insight and showed that quantum measurement can be explained using a more radical generalisation of monads, the so-called arrows, more specifically, indexed arrows, which we define in this thesis. This result connects “generic” and “complete” quantum features to well-founded semantics constructions and programming languages. Understanding of Interpretations of QuantumMechanics as Computational Effects. In a thought experiment, Einsten, Podolsky, and Rosen demonstrate some counter-intuitive consequences of quantum mechanics. The basic idea is that two entangled particles appear to always communicate some information even when they are separated by arbitrarily large distances. There has been endless debate and papers on this topic, but it is interesting that, as proposed by Amr Sabry, this strangeness can be essentially modelled by assignments to global variables. We build on that, and model this strangeness using the general notions of computational effects embodied in monads and arrows. Reasoning about Quantum Programs Using Algebraic Laws. We have developed a preliminary work to do equational reasoning about quantum algorithms written in a pure sublanguage of a functional quantum programming language, called QML.application/pdfengTeoria : Ciência : ComputaçãoComputação quânticaProgramacao funcionalQuantum Programming LanguagesHaskellDensity matricesMonadsStructuring general and complete quantum computations in Haskell : the arrows approachEstruturando computaçõoes quânticas gerais e completas em Haskell : abordagem das setasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2006doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000633967.pdf000633967.pdfTexto completo (inglês)application/pdf775457http://www.lume.ufrgs.br/bitstream/10183/13154/1/000633967.pdfcaaa1ce471c69e54d3979e251d53b7d0MD51TEXT000633967.pdf.txt000633967.pdf.txtExtracted Texttext/plain269837http://www.lume.ufrgs.br/bitstream/10183/13154/2/000633967.pdf.txtfc1a3fab98b86d4931db1dee0e4f3f38MD52THUMBNAIL000633967.pdf.jpg000633967.pdf.jpgGenerated Thumbnailimage/jpeg1069http://www.lume.ufrgs.br/bitstream/10183/13154/3/000633967.pdf.jpga74ba420439b0c422532943036b704f7MD5310183/131542021-05-07 04:52:48.329136oai:www.lume.ufrgs.br:10183/13154Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-07T07:52:48Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Structuring general and complete quantum computations in Haskell : the arrows approach
dc.title.alternative.pt.fl_str_mv Estruturando computaçõoes quânticas gerais e completas em Haskell : abordagem das setas
title Structuring general and complete quantum computations in Haskell : the arrows approach
spellingShingle Structuring general and complete quantum computations in Haskell : the arrows approach
Vizzotto, Juliana Kaizer
Teoria : Ciência : Computação
Computação quântica
Programacao funcional
Quantum Programming Languages
Haskell
Density matrices
Monads
title_short Structuring general and complete quantum computations in Haskell : the arrows approach
title_full Structuring general and complete quantum computations in Haskell : the arrows approach
title_fullStr Structuring general and complete quantum computations in Haskell : the arrows approach
title_full_unstemmed Structuring general and complete quantum computations in Haskell : the arrows approach
title_sort Structuring general and complete quantum computations in Haskell : the arrows approach
author Vizzotto, Juliana Kaizer
author_facet Vizzotto, Juliana Kaizer
author_role author
dc.contributor.author.fl_str_mv Vizzotto, Juliana Kaizer
dc.contributor.advisor1.fl_str_mv Costa, Antonio Carlos da Rocha
dc.contributor.advisor-co1.fl_str_mv Sabry, Amr A.
contributor_str_mv Costa, Antonio Carlos da Rocha
Sabry, Amr A.
dc.subject.por.fl_str_mv Teoria : Ciência : Computação
Computação quântica
Programacao funcional
topic Teoria : Ciência : Computação
Computação quântica
Programacao funcional
Quantum Programming Languages
Haskell
Density matrices
Monads
dc.subject.eng.fl_str_mv Quantum Programming Languages
Haskell
Density matrices
Monads
description Computaçãao quântica pode ser entendida como transformação da informação codificada no estado de um sistema físico quântico. A idéia básica da computação quântica é codificar dados utilizando bits quânticos (qubits). Diferentemente do bit clássico, o qubit pode existir em uma superposição dos seus estados básicos permitindo o “paralelismo quântico”, o qual é uma característica importante da computação quântica visto que pode aumentar consideravelmente a velocidade de processamento dos algoritmos. Entretanto, tipos de dados quânticos são bastante poderosos não somente por causa da superposição de estados. Existem outras propriedades ímpares como medida e emaranhamento. Nesta tese, nós discutimos que um modelo realístico para computações quânticas deve ser geral com respeito a medidas, e completo com respeito a comunicação entre o mundo quântico e o mundo clássico. Nós, então, explicamos e estruturamos computações quânticas gerais e completas em Haskell utilizando construções conhecidas da área de semântica e linguagens de programação clássicas, como mônadas e setas. Em mais detalhes, esta tese se concentra nas seguintes contribuições. Mônadas e Setas. Paralelismo quântico, emaranhamento e medida quântica certamente vão além do escopo de linguagens funcionais “puras”. Nós mostramos que o paralelismo quântico pode ser modelado utilizando-se uma pequena generalização de mônadas, chamada mônadas indexadas ou estruturas Kleisli. Além disso, nós mostramos que a medida quântica pode ser explicada utilizando-se uma generalização mais radical de mônadas, as assim chamadas setas, mais especificamente, setas indexadas, as quais definimos nesta tese. Este resultado conecta características quânticas “genéricas” e “completas” `a construções semânticas de linguagens de programação bem fundamentadas. Entendendo as Interpretações da Mecânica Quântica como Efeitos Computacionais. Em um experimento hipotético, Einstein, Podolsky e Rosen demonstraram algumas consequências contra-intuitivas da mecânica quântica. A idéia básica é que duas partículas parecem sempre comunicar alguma informação mesmo estando separadas por uma distância arbitrariamente grande. Existe muito debate e muitos artigos sobre esse tópico, mas é interessante notar que, como proposto por Amr Sabry, essas características estranhas podem ser essencialmente modeladas por atribuições a variáveis globais. Baseados nesta idéia nós modelamos este comportamento estranho utilizando noções gerais de efeitos computacionais incorporados nas noções de mônadas e setas. Provando Propriedades de Programas Quânticos Utilizando Leis Algébricas. Nós desenvolvemos um trabalho preliminar para fazer provas equacionais sobre algoritmos quânticos escritos em uma sublinguagem pura de uma linguagem de programação funcional quântica, chamada QML.
publishDate 2006
dc.date.issued.fl_str_mv 2006
dc.date.accessioned.fl_str_mv 2008-06-14T04:11:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/13154
dc.identifier.nrb.pt_BR.fl_str_mv 000633967
url http://hdl.handle.net/10183/13154
identifier_str_mv 000633967
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/13154/1/000633967.pdf
http://www.lume.ufrgs.br/bitstream/10183/13154/2/000633967.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/13154/3/000633967.pdf.jpg
bitstream.checksum.fl_str_mv caaa1ce471c69e54d3979e251d53b7d0
fc1a3fab98b86d4931db1dee0e4f3f38
a74ba420439b0c422532943036b704f7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810088728149884928