Codificação de sequências temporais em padrões espaciais em redes neurais
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/10183/206583 |
Resumo: | Há evidências de que diferentes redes neuronais cerebrais podem ter formas distintas de manter informações, tanto em termos de mecanismo quanto de codificação. Em particular, quando se modela a função de memória no cérebro, dois referenciais teóricos são frequentemente usados: redes atratoras recorrentes e buffers de memória de trabalho baseados na biestabilidade. Neste trabalho, propomos estudar o acoplamento funcional entre diferentes mecanismos de armazenamento e processamento de informação, focalizando o caso especial de uma arquitetura neural composta de dois buffers de memória de trabalho e uma rede recorrente (RNN) que é capaz de manter memórias de longo prazo como atratores. A sequência temporal que chega do buffer de entrada é armazenada como um padrão espacial na RNN, e depois decodificada como um padrão temporal no buffer de saída. Analisamos a questão que diz respeito a possibilidade de uma estrutura de rede aleatória na RNN ser suficiente para garantir a transferência de informação entre os dois buffers. Exploramos quatro modelos de conectividade aleatória: Erdös-Rényi (ER), Watts-Strogatz (WS), Newman-Watts-Strogatz (NWS) e Barabási-Albert (BA). Usando como métrica para o erro de codificação a distância de edição entre as sequências de entrada e saída, mostramos que os modelos de conectividade que correspondem a redes com propriedades de pequeno-mundo são mais eficientes do que os outros modelos. |
id |
URGS_ee8421a0c53bd963564e66fc027ceb43 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/206583 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
|
spelling |
Cristimann, Nathália MariathIdiart, Marco Aurelio Pires2020-03-11T04:16:02Z2019http://hdl.handle.net/10183/206583001113371Há evidências de que diferentes redes neuronais cerebrais podem ter formas distintas de manter informações, tanto em termos de mecanismo quanto de codificação. Em particular, quando se modela a função de memória no cérebro, dois referenciais teóricos são frequentemente usados: redes atratoras recorrentes e buffers de memória de trabalho baseados na biestabilidade. Neste trabalho, propomos estudar o acoplamento funcional entre diferentes mecanismos de armazenamento e processamento de informação, focalizando o caso especial de uma arquitetura neural composta de dois buffers de memória de trabalho e uma rede recorrente (RNN) que é capaz de manter memórias de longo prazo como atratores. A sequência temporal que chega do buffer de entrada é armazenada como um padrão espacial na RNN, e depois decodificada como um padrão temporal no buffer de saída. Analisamos a questão que diz respeito a possibilidade de uma estrutura de rede aleatória na RNN ser suficiente para garantir a transferência de informação entre os dois buffers. Exploramos quatro modelos de conectividade aleatória: Erdös-Rényi (ER), Watts-Strogatz (WS), Newman-Watts-Strogatz (NWS) e Barabási-Albert (BA). Usando como métrica para o erro de codificação a distância de edição entre as sequências de entrada e saída, mostramos que os modelos de conectividade que correspondem a redes com propriedades de pequeno-mundo são mais eficientes do que os outros modelos.There are evidences that different brain networks may have distinct forms of holding information, both in terms of mechanism and coding. In particular, when modeling memory function in the brain, two theoretical frameworks have been used: recurrent attractor networks and bistability based working memory buffers. In this work we propose a mechanism using inhibitory competition that provides a satisfactory functional coupling between such different forms of information storage and processing. We focus in the simpler case of a neural architecture comprised of two working memory buffers that interact via a recurrent neural network (RNN) that is capable of holding long term memories as attractors. The temporal sequence coming from the input buffer is stored as a spatial pattern in the RNN, and subsequently decoded as a temporal pattern in the output buffer. We address the question of whether a random network structure in RNN could be sufficient to guarantee information transfer between the two buffers. We explore four models of random connectivity: Erdös-Rényi (ER), Watts-Strogatz (WS), Newman-Watts-Strogatz (NWS) and Barabási-Albert (BA). Using as a metric for the encoding error the edit distance between the output and input sequences, we show that the connectivity models which correspond to networks that have small-world properties are more efficient than the other models.application/pdfporModelos de redes neuraisMemória de trabalhoModelos computacionaisCodificação de sequências temporais em padrões espaciais em redes neuraisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de FísicaPrograma de Pós-Graduação em FísicaPorto Alegre, BR-RS2019mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001113371.pdf.txt001113371.pdf.txtExtracted Texttext/plain121497http://www.lume.ufrgs.br/bitstream/10183/206583/2/001113371.pdf.txt9cef696a78640ba6397c986151c70414MD52ORIGINAL001113371.pdfTexto completoapplication/pdf4096639http://www.lume.ufrgs.br/bitstream/10183/206583/1/001113371.pdf7bbe293955dcc3a9921773e88ba62217MD5110183/2065832020-03-12 04:13:05.59001oai:www.lume.ufrgs.br:10183/206583Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532020-03-12T07:13:05Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Codificação de sequências temporais em padrões espaciais em redes neurais |
title |
Codificação de sequências temporais em padrões espaciais em redes neurais |
spellingShingle |
Codificação de sequências temporais em padrões espaciais em redes neurais Cristimann, Nathália Mariath Modelos de redes neurais Memória de trabalho Modelos computacionais |
title_short |
Codificação de sequências temporais em padrões espaciais em redes neurais |
title_full |
Codificação de sequências temporais em padrões espaciais em redes neurais |
title_fullStr |
Codificação de sequências temporais em padrões espaciais em redes neurais |
title_full_unstemmed |
Codificação de sequências temporais em padrões espaciais em redes neurais |
title_sort |
Codificação de sequências temporais em padrões espaciais em redes neurais |
author |
Cristimann, Nathália Mariath |
author_facet |
Cristimann, Nathália Mariath |
author_role |
author |
dc.contributor.author.fl_str_mv |
Cristimann, Nathália Mariath |
dc.contributor.advisor1.fl_str_mv |
Idiart, Marco Aurelio Pires |
contributor_str_mv |
Idiart, Marco Aurelio Pires |
dc.subject.por.fl_str_mv |
Modelos de redes neurais Memória de trabalho Modelos computacionais |
topic |
Modelos de redes neurais Memória de trabalho Modelos computacionais |
description |
Há evidências de que diferentes redes neuronais cerebrais podem ter formas distintas de manter informações, tanto em termos de mecanismo quanto de codificação. Em particular, quando se modela a função de memória no cérebro, dois referenciais teóricos são frequentemente usados: redes atratoras recorrentes e buffers de memória de trabalho baseados na biestabilidade. Neste trabalho, propomos estudar o acoplamento funcional entre diferentes mecanismos de armazenamento e processamento de informação, focalizando o caso especial de uma arquitetura neural composta de dois buffers de memória de trabalho e uma rede recorrente (RNN) que é capaz de manter memórias de longo prazo como atratores. A sequência temporal que chega do buffer de entrada é armazenada como um padrão espacial na RNN, e depois decodificada como um padrão temporal no buffer de saída. Analisamos a questão que diz respeito a possibilidade de uma estrutura de rede aleatória na RNN ser suficiente para garantir a transferência de informação entre os dois buffers. Exploramos quatro modelos de conectividade aleatória: Erdös-Rényi (ER), Watts-Strogatz (WS), Newman-Watts-Strogatz (NWS) e Barabási-Albert (BA). Usando como métrica para o erro de codificação a distância de edição entre as sequências de entrada e saída, mostramos que os modelos de conectividade que correspondem a redes com propriedades de pequeno-mundo são mais eficientes do que os outros modelos. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019 |
dc.date.accessioned.fl_str_mv |
2020-03-11T04:16:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/206583 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001113371 |
url |
http://hdl.handle.net/10183/206583 |
identifier_str_mv |
001113371 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/206583/2/001113371.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/206583/1/001113371.pdf |
bitstream.checksum.fl_str_mv |
9cef696a78640ba6397c986151c70414 7bbe293955dcc3a9921773e88ba62217 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1797065146639581184 |