Predicting the impact of climate change on myrtle rust

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Gonçalves, Manoel Penachio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/11/11135/tde-04062025-080726/
Resumo: Predicting the occurrence of plant diseases under climate change scenarios is challenging, and forecasting the damage caused by such diseases is even more complex. Myrtle rust (Austropuccinia psidii) is a globally relevant disease that affects hundreds of species within the Myrtaceae family. In Brazil, rust is the most damaging fungal disease of guava trees, impairing photosynthesis, vegetative development, and fruit production. Although current predictive models suggest that the occurrence of this disease will decrease with rising temperatures in the tropics, these projections do not consider the potential damage caused by the pathogen under high-temperature scenarios. The objectives of this study were: (i) to characterize the physio-histopathological damage resulting from the A. psidii-guava interaction under favorable environmental conditions; (ii) to assess the effects of elevated temperatures on monocyclic components and the photosynthetic damage caused by the disease; and (iii) to develop a myrtle rust infection risk model using daily weather variables as predictors, applying it to forecast the future risk of the disease in São Paulo and Pernambuco, the main guava-producing states in Brazil. In Chapter 1, the response of leaf gas exchange to light intensity was analyzed in healthy and diseased guava plants. Colonization of the substomatal chamber by A. psidii altered stomatal dynamics and compromised leaf gas exchange. The pathogen\'s ability to interfere with stomatal regulation may impair the plant\'s response under climate change scenarios. In Chapter 2, experiments under different thermal regimes demonstrated that increased temperature prolonged the rust latent period and reduced lesion density, disease severity, and pathogen sporulation. However, photosynthetic damage was not proportionally reduced, with severe reductions in gas exchange variables observed in infected plants maintained at high temperatures. Furthermore, A. psidii impaired the plants\' thermal dissipation capacity, indicating a compromised ability to acclimatize to environmental changes. In Chapter 3, a predictive model based on machine learning was developed using daily weather variables as predictors. The model demonstrated high performance in estimating infection risk, offering a promising alternative to models that require hourly predictor variables. Projections generated by the model indicated an increased risk of infection in key guava-producing regions in São Paulo, while the risk in Pernambuco is expected to remain low. Together, the risk estimates and quantification of photosynthetic damage caused by the disease under potential future climate scenarios provide a scientific basis for the development of management strategies aimed at mitigating the impacts of myrtle rust on guava cultivation.
id USP_0e6a83fd0327a57b5a7e4409c52f96ee
oai_identifier_str oai:teses.usp.br:tde-04062025-080726
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Predicting the impact of climate change on myrtle rustPrevendo o impacto das mudanças climáticas na ferrugem das mirtáceasAustropuccinia psidiiAustropuccinia psidiiAquecimento globalEpidemiologiaEpidemiologyFerrugem da goiabeiraFotossínteseGlobal warmingGuava rustModelagem preditivaPhotosynthesisPredictive modellingPredicting the occurrence of plant diseases under climate change scenarios is challenging, and forecasting the damage caused by such diseases is even more complex. Myrtle rust (Austropuccinia psidii) is a globally relevant disease that affects hundreds of species within the Myrtaceae family. In Brazil, rust is the most damaging fungal disease of guava trees, impairing photosynthesis, vegetative development, and fruit production. Although current predictive models suggest that the occurrence of this disease will decrease with rising temperatures in the tropics, these projections do not consider the potential damage caused by the pathogen under high-temperature scenarios. The objectives of this study were: (i) to characterize the physio-histopathological damage resulting from the A. psidii-guava interaction under favorable environmental conditions; (ii) to assess the effects of elevated temperatures on monocyclic components and the photosynthetic damage caused by the disease; and (iii) to develop a myrtle rust infection risk model using daily weather variables as predictors, applying it to forecast the future risk of the disease in São Paulo and Pernambuco, the main guava-producing states in Brazil. In Chapter 1, the response of leaf gas exchange to light intensity was analyzed in healthy and diseased guava plants. Colonization of the substomatal chamber by A. psidii altered stomatal dynamics and compromised leaf gas exchange. The pathogen\'s ability to interfere with stomatal regulation may impair the plant\'s response under climate change scenarios. In Chapter 2, experiments under different thermal regimes demonstrated that increased temperature prolonged the rust latent period and reduced lesion density, disease severity, and pathogen sporulation. However, photosynthetic damage was not proportionally reduced, with severe reductions in gas exchange variables observed in infected plants maintained at high temperatures. Furthermore, A. psidii impaired the plants\' thermal dissipation capacity, indicating a compromised ability to acclimatize to environmental changes. In Chapter 3, a predictive model based on machine learning was developed using daily weather variables as predictors. The model demonstrated high performance in estimating infection risk, offering a promising alternative to models that require hourly predictor variables. Projections generated by the model indicated an increased risk of infection in key guava-producing regions in São Paulo, while the risk in Pernambuco is expected to remain low. Together, the risk estimates and quantification of photosynthetic damage caused by the disease under potential future climate scenarios provide a scientific basis for the development of management strategies aimed at mitigating the impacts of myrtle rust on guava cultivation.Prever a ocorrência de doenças em plantas sob cenários de mudanças climáticas é desafiador, sendo a previsão dos danos causados por essas doenças um desafio ainda maior. A ferrugem das mirtáceas (Austropuccinia psidii) é uma doença de importância global que acomete centenas de espécies da família Myrtaceae. No Brasil, a ferrugem é a principal doença fúngica da goiabeira, comprometendo a fotossíntese, o desenvolvimento vegetativo, e a produção de frutos. Embora os modelos preditivos atuais indiquem que a ocorrência dessa doença diminuirá com o aumento das temperaturas nos trópicos, essas projeções não consideram os possíveis danos causados pelo patógeno sob cenários de alta temperatura. Os objetivos deste estudo foram: (i) caracterizar o dano fisio-histopatológico da interação A. psidii-goiabeira sob condições ambientais favoráveis; (ii) avaliar os efeitos de temperaturas elevadas nos componentes monocíclicos e nos danos fotossintéticos causados pela doença; e (iii) desenvolver um modelo de risco de infecção de ferrugem das mirtáceas que utilize variáveis meteorológicas diárias como preditoras, aplicando-o para prever o risco futuro da doença nos estados de São Paulo e Pernambuco, os maiores produtores de goiaba no Brasil. No Capítulo 1, a resposta das trocas gasosas foliares à intensidade luminosa foi analisada em plantas de goiabeira sadias e doentes. A colonização da câmara subestomática por A. psidii alterou a dinâmica estomática e comprometeu as trocas gasosas foliares. A capacidade do patógeno de interferir na regulação estomática pode comprometer a resposta da planta sob cenários de mudanças climáticas. No Capítulo 2, os experimentos com diferentes regimes térmicos demonstraram que o aumento da temperatura prolongou o período latente da ferrugem e reduziu a densidade de lesões, a severidade da doença e a esporulação do patógeno. No entanto, os danos fotossintéticos não foram proporcionalmente atenuados, com severas reduções nas variáveis de trocas gasosas observadas em plantas infectadas mantidas sob altas temperaturas. Além disso, A. psidii prejudicou a capacidade de dissipação térmica das plantas, indicando que sua habilidade de se aclimatar às variações ambientais estava comprometida. No Capítulo 3, um modelo preditivo baseado em aprendizado de máquina foi desenvolvido a partir de variáveis meteorológicas diárias como preditoras. O modelo apresentou alta performance na estimativa do risco de infecção, oferecendo uma alternativa promissora aos modelos que necessitam de variáveis preditoras horárias. As projeções realizadas pelo modelo indicaram aumento do risco de infecção nas principais regiões produtoras de goiaba do estado de São Paulo, enquanto em Pernambuco o risco deverá permanecer baixo. Em conjunto, as estimativas de risco e a quantificação dos danos fotossintéticos causados pela doença sob possíveis cenários climáticos futuros fornecem subsídios para o desenvolvimento de estratégias de manejo com foco na mitigação dos impactos da ferrugem das mirtáceas na cultura da goiabeira.Biblioteca Digitais de Teses e Dissertações da USPAmorim, LilianGonçalves, Manoel Penachio2025-05-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11135/tde-04062025-080726/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-06-05T18:16:02Zoai:teses.usp.br:tde-04062025-080726Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-06-05T18:16:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Predicting the impact of climate change on myrtle rust
Prevendo o impacto das mudanças climáticas na ferrugem das mirtáceas
title Predicting the impact of climate change on myrtle rust
spellingShingle Predicting the impact of climate change on myrtle rust
Gonçalves, Manoel Penachio
Austropuccinia psidii
Austropuccinia psidii
Aquecimento global
Epidemiologia
Epidemiology
Ferrugem da goiabeira
Fotossíntese
Global warming
Guava rust
Modelagem preditiva
Photosynthesis
Predictive modelling
title_short Predicting the impact of climate change on myrtle rust
title_full Predicting the impact of climate change on myrtle rust
title_fullStr Predicting the impact of climate change on myrtle rust
title_full_unstemmed Predicting the impact of climate change on myrtle rust
title_sort Predicting the impact of climate change on myrtle rust
author Gonçalves, Manoel Penachio
author_facet Gonçalves, Manoel Penachio
author_role author
dc.contributor.none.fl_str_mv Amorim, Lilian
dc.contributor.author.fl_str_mv Gonçalves, Manoel Penachio
dc.subject.por.fl_str_mv Austropuccinia psidii
Austropuccinia psidii
Aquecimento global
Epidemiologia
Epidemiology
Ferrugem da goiabeira
Fotossíntese
Global warming
Guava rust
Modelagem preditiva
Photosynthesis
Predictive modelling
topic Austropuccinia psidii
Austropuccinia psidii
Aquecimento global
Epidemiologia
Epidemiology
Ferrugem da goiabeira
Fotossíntese
Global warming
Guava rust
Modelagem preditiva
Photosynthesis
Predictive modelling
description Predicting the occurrence of plant diseases under climate change scenarios is challenging, and forecasting the damage caused by such diseases is even more complex. Myrtle rust (Austropuccinia psidii) is a globally relevant disease that affects hundreds of species within the Myrtaceae family. In Brazil, rust is the most damaging fungal disease of guava trees, impairing photosynthesis, vegetative development, and fruit production. Although current predictive models suggest that the occurrence of this disease will decrease with rising temperatures in the tropics, these projections do not consider the potential damage caused by the pathogen under high-temperature scenarios. The objectives of this study were: (i) to characterize the physio-histopathological damage resulting from the A. psidii-guava interaction under favorable environmental conditions; (ii) to assess the effects of elevated temperatures on monocyclic components and the photosynthetic damage caused by the disease; and (iii) to develop a myrtle rust infection risk model using daily weather variables as predictors, applying it to forecast the future risk of the disease in São Paulo and Pernambuco, the main guava-producing states in Brazil. In Chapter 1, the response of leaf gas exchange to light intensity was analyzed in healthy and diseased guava plants. Colonization of the substomatal chamber by A. psidii altered stomatal dynamics and compromised leaf gas exchange. The pathogen\'s ability to interfere with stomatal regulation may impair the plant\'s response under climate change scenarios. In Chapter 2, experiments under different thermal regimes demonstrated that increased temperature prolonged the rust latent period and reduced lesion density, disease severity, and pathogen sporulation. However, photosynthetic damage was not proportionally reduced, with severe reductions in gas exchange variables observed in infected plants maintained at high temperatures. Furthermore, A. psidii impaired the plants\' thermal dissipation capacity, indicating a compromised ability to acclimatize to environmental changes. In Chapter 3, a predictive model based on machine learning was developed using daily weather variables as predictors. The model demonstrated high performance in estimating infection risk, offering a promising alternative to models that require hourly predictor variables. Projections generated by the model indicated an increased risk of infection in key guava-producing regions in São Paulo, while the risk in Pernambuco is expected to remain low. Together, the risk estimates and quantification of photosynthetic damage caused by the disease under potential future climate scenarios provide a scientific basis for the development of management strategies aimed at mitigating the impacts of myrtle rust on guava cultivation.
publishDate 2025
dc.date.none.fl_str_mv 2025-05-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11135/tde-04062025-080726/
url https://www.teses.usp.br/teses/disponiveis/11/11135/tde-04062025-080726/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786327130734592