Predicting the impact of climate change on myrtle rust
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/11/11135/tde-04062025-080726/ |
Resumo: | Predicting the occurrence of plant diseases under climate change scenarios is challenging, and forecasting the damage caused by such diseases is even more complex. Myrtle rust (Austropuccinia psidii) is a globally relevant disease that affects hundreds of species within the Myrtaceae family. In Brazil, rust is the most damaging fungal disease of guava trees, impairing photosynthesis, vegetative development, and fruit production. Although current predictive models suggest that the occurrence of this disease will decrease with rising temperatures in the tropics, these projections do not consider the potential damage caused by the pathogen under high-temperature scenarios. The objectives of this study were: (i) to characterize the physio-histopathological damage resulting from the A. psidii-guava interaction under favorable environmental conditions; (ii) to assess the effects of elevated temperatures on monocyclic components and the photosynthetic damage caused by the disease; and (iii) to develop a myrtle rust infection risk model using daily weather variables as predictors, applying it to forecast the future risk of the disease in São Paulo and Pernambuco, the main guava-producing states in Brazil. In Chapter 1, the response of leaf gas exchange to light intensity was analyzed in healthy and diseased guava plants. Colonization of the substomatal chamber by A. psidii altered stomatal dynamics and compromised leaf gas exchange. The pathogen\'s ability to interfere with stomatal regulation may impair the plant\'s response under climate change scenarios. In Chapter 2, experiments under different thermal regimes demonstrated that increased temperature prolonged the rust latent period and reduced lesion density, disease severity, and pathogen sporulation. However, photosynthetic damage was not proportionally reduced, with severe reductions in gas exchange variables observed in infected plants maintained at high temperatures. Furthermore, A. psidii impaired the plants\' thermal dissipation capacity, indicating a compromised ability to acclimatize to environmental changes. In Chapter 3, a predictive model based on machine learning was developed using daily weather variables as predictors. The model demonstrated high performance in estimating infection risk, offering a promising alternative to models that require hourly predictor variables. Projections generated by the model indicated an increased risk of infection in key guava-producing regions in São Paulo, while the risk in Pernambuco is expected to remain low. Together, the risk estimates and quantification of photosynthetic damage caused by the disease under potential future climate scenarios provide a scientific basis for the development of management strategies aimed at mitigating the impacts of myrtle rust on guava cultivation. |
| id |
USP_0e6a83fd0327a57b5a7e4409c52f96ee |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-04062025-080726 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Predicting the impact of climate change on myrtle rustPrevendo o impacto das mudanças climáticas na ferrugem das mirtáceasAustropuccinia psidiiAustropuccinia psidiiAquecimento globalEpidemiologiaEpidemiologyFerrugem da goiabeiraFotossínteseGlobal warmingGuava rustModelagem preditivaPhotosynthesisPredictive modellingPredicting the occurrence of plant diseases under climate change scenarios is challenging, and forecasting the damage caused by such diseases is even more complex. Myrtle rust (Austropuccinia psidii) is a globally relevant disease that affects hundreds of species within the Myrtaceae family. In Brazil, rust is the most damaging fungal disease of guava trees, impairing photosynthesis, vegetative development, and fruit production. Although current predictive models suggest that the occurrence of this disease will decrease with rising temperatures in the tropics, these projections do not consider the potential damage caused by the pathogen under high-temperature scenarios. The objectives of this study were: (i) to characterize the physio-histopathological damage resulting from the A. psidii-guava interaction under favorable environmental conditions; (ii) to assess the effects of elevated temperatures on monocyclic components and the photosynthetic damage caused by the disease; and (iii) to develop a myrtle rust infection risk model using daily weather variables as predictors, applying it to forecast the future risk of the disease in São Paulo and Pernambuco, the main guava-producing states in Brazil. In Chapter 1, the response of leaf gas exchange to light intensity was analyzed in healthy and diseased guava plants. Colonization of the substomatal chamber by A. psidii altered stomatal dynamics and compromised leaf gas exchange. The pathogen\'s ability to interfere with stomatal regulation may impair the plant\'s response under climate change scenarios. In Chapter 2, experiments under different thermal regimes demonstrated that increased temperature prolonged the rust latent period and reduced lesion density, disease severity, and pathogen sporulation. However, photosynthetic damage was not proportionally reduced, with severe reductions in gas exchange variables observed in infected plants maintained at high temperatures. Furthermore, A. psidii impaired the plants\' thermal dissipation capacity, indicating a compromised ability to acclimatize to environmental changes. In Chapter 3, a predictive model based on machine learning was developed using daily weather variables as predictors. The model demonstrated high performance in estimating infection risk, offering a promising alternative to models that require hourly predictor variables. Projections generated by the model indicated an increased risk of infection in key guava-producing regions in São Paulo, while the risk in Pernambuco is expected to remain low. Together, the risk estimates and quantification of photosynthetic damage caused by the disease under potential future climate scenarios provide a scientific basis for the development of management strategies aimed at mitigating the impacts of myrtle rust on guava cultivation.Prever a ocorrência de doenças em plantas sob cenários de mudanças climáticas é desafiador, sendo a previsão dos danos causados por essas doenças um desafio ainda maior. A ferrugem das mirtáceas (Austropuccinia psidii) é uma doença de importância global que acomete centenas de espécies da família Myrtaceae. No Brasil, a ferrugem é a principal doença fúngica da goiabeira, comprometendo a fotossíntese, o desenvolvimento vegetativo, e a produção de frutos. Embora os modelos preditivos atuais indiquem que a ocorrência dessa doença diminuirá com o aumento das temperaturas nos trópicos, essas projeções não consideram os possíveis danos causados pelo patógeno sob cenários de alta temperatura. Os objetivos deste estudo foram: (i) caracterizar o dano fisio-histopatológico da interação A. psidii-goiabeira sob condições ambientais favoráveis; (ii) avaliar os efeitos de temperaturas elevadas nos componentes monocíclicos e nos danos fotossintéticos causados pela doença; e (iii) desenvolver um modelo de risco de infecção de ferrugem das mirtáceas que utilize variáveis meteorológicas diárias como preditoras, aplicando-o para prever o risco futuro da doença nos estados de São Paulo e Pernambuco, os maiores produtores de goiaba no Brasil. No Capítulo 1, a resposta das trocas gasosas foliares à intensidade luminosa foi analisada em plantas de goiabeira sadias e doentes. A colonização da câmara subestomática por A. psidii alterou a dinâmica estomática e comprometeu as trocas gasosas foliares. A capacidade do patógeno de interferir na regulação estomática pode comprometer a resposta da planta sob cenários de mudanças climáticas. No Capítulo 2, os experimentos com diferentes regimes térmicos demonstraram que o aumento da temperatura prolongou o período latente da ferrugem e reduziu a densidade de lesões, a severidade da doença e a esporulação do patógeno. No entanto, os danos fotossintéticos não foram proporcionalmente atenuados, com severas reduções nas variáveis de trocas gasosas observadas em plantas infectadas mantidas sob altas temperaturas. Além disso, A. psidii prejudicou a capacidade de dissipação térmica das plantas, indicando que sua habilidade de se aclimatar às variações ambientais estava comprometida. No Capítulo 3, um modelo preditivo baseado em aprendizado de máquina foi desenvolvido a partir de variáveis meteorológicas diárias como preditoras. O modelo apresentou alta performance na estimativa do risco de infecção, oferecendo uma alternativa promissora aos modelos que necessitam de variáveis preditoras horárias. As projeções realizadas pelo modelo indicaram aumento do risco de infecção nas principais regiões produtoras de goiaba do estado de São Paulo, enquanto em Pernambuco o risco deverá permanecer baixo. Em conjunto, as estimativas de risco e a quantificação dos danos fotossintéticos causados pela doença sob possíveis cenários climáticos futuros fornecem subsídios para o desenvolvimento de estratégias de manejo com foco na mitigação dos impactos da ferrugem das mirtáceas na cultura da goiabeira.Biblioteca Digitais de Teses e Dissertações da USPAmorim, LilianGonçalves, Manoel Penachio2025-05-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11135/tde-04062025-080726/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-06-05T18:16:02Zoai:teses.usp.br:tde-04062025-080726Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-06-05T18:16:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Predicting the impact of climate change on myrtle rust Prevendo o impacto das mudanças climáticas na ferrugem das mirtáceas |
| title |
Predicting the impact of climate change on myrtle rust |
| spellingShingle |
Predicting the impact of climate change on myrtle rust Gonçalves, Manoel Penachio Austropuccinia psidii Austropuccinia psidii Aquecimento global Epidemiologia Epidemiology Ferrugem da goiabeira Fotossíntese Global warming Guava rust Modelagem preditiva Photosynthesis Predictive modelling |
| title_short |
Predicting the impact of climate change on myrtle rust |
| title_full |
Predicting the impact of climate change on myrtle rust |
| title_fullStr |
Predicting the impact of climate change on myrtle rust |
| title_full_unstemmed |
Predicting the impact of climate change on myrtle rust |
| title_sort |
Predicting the impact of climate change on myrtle rust |
| author |
Gonçalves, Manoel Penachio |
| author_facet |
Gonçalves, Manoel Penachio |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Amorim, Lilian |
| dc.contributor.author.fl_str_mv |
Gonçalves, Manoel Penachio |
| dc.subject.por.fl_str_mv |
Austropuccinia psidii Austropuccinia psidii Aquecimento global Epidemiologia Epidemiology Ferrugem da goiabeira Fotossíntese Global warming Guava rust Modelagem preditiva Photosynthesis Predictive modelling |
| topic |
Austropuccinia psidii Austropuccinia psidii Aquecimento global Epidemiologia Epidemiology Ferrugem da goiabeira Fotossíntese Global warming Guava rust Modelagem preditiva Photosynthesis Predictive modelling |
| description |
Predicting the occurrence of plant diseases under climate change scenarios is challenging, and forecasting the damage caused by such diseases is even more complex. Myrtle rust (Austropuccinia psidii) is a globally relevant disease that affects hundreds of species within the Myrtaceae family. In Brazil, rust is the most damaging fungal disease of guava trees, impairing photosynthesis, vegetative development, and fruit production. Although current predictive models suggest that the occurrence of this disease will decrease with rising temperatures in the tropics, these projections do not consider the potential damage caused by the pathogen under high-temperature scenarios. The objectives of this study were: (i) to characterize the physio-histopathological damage resulting from the A. psidii-guava interaction under favorable environmental conditions; (ii) to assess the effects of elevated temperatures on monocyclic components and the photosynthetic damage caused by the disease; and (iii) to develop a myrtle rust infection risk model using daily weather variables as predictors, applying it to forecast the future risk of the disease in São Paulo and Pernambuco, the main guava-producing states in Brazil. In Chapter 1, the response of leaf gas exchange to light intensity was analyzed in healthy and diseased guava plants. Colonization of the substomatal chamber by A. psidii altered stomatal dynamics and compromised leaf gas exchange. The pathogen\'s ability to interfere with stomatal regulation may impair the plant\'s response under climate change scenarios. In Chapter 2, experiments under different thermal regimes demonstrated that increased temperature prolonged the rust latent period and reduced lesion density, disease severity, and pathogen sporulation. However, photosynthetic damage was not proportionally reduced, with severe reductions in gas exchange variables observed in infected plants maintained at high temperatures. Furthermore, A. psidii impaired the plants\' thermal dissipation capacity, indicating a compromised ability to acclimatize to environmental changes. In Chapter 3, a predictive model based on machine learning was developed using daily weather variables as predictors. The model demonstrated high performance in estimating infection risk, offering a promising alternative to models that require hourly predictor variables. Projections generated by the model indicated an increased risk of infection in key guava-producing regions in São Paulo, while the risk in Pernambuco is expected to remain low. Together, the risk estimates and quantification of photosynthetic damage caused by the disease under potential future climate scenarios provide a scientific basis for the development of management strategies aimed at mitigating the impacts of myrtle rust on guava cultivation. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-05-23 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11135/tde-04062025-080726/ |
| url |
https://www.teses.usp.br/teses/disponiveis/11/11135/tde-04062025-080726/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1844786327130734592 |