Efficient hierarchical layered graph approach for multi-region segmentation

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Leon, Leissi Margarita Castaneda
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-12092019-110342/
Resumo: Image segmentation refers to the process of partitioning an image into meaningful regions of interest (objects) by assigning distinct labels to their composing pixels. Images are usually composed of multiple objects with distinctive features, thus requiring distinct high-level priors for their appropriate modeling. In order to obtain a good segmentation result, the segmentation method must attend all the individual priors of each object, as well as capture their inclusion/exclusion relations. However, many existing classical approaches do not include any form of structural information together with different high-level priors for each object into a single energy optimization. Consequently, they may be inappropriate in this context. We propose a novel efficient seed-based method for the multiple object segmentation of images based on graphs, named Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). It uses a tree of the relations between the image objects, being each object represented by a node. Each tree node may contain different individual high-level priors and defines a weighted digraph, named as layer. The layer graphs are then integrated into a hierarchical graph, considering the hierarchical relations of inclusion and exclusion. A single energy optimization is performed in the hierarchical layered weighted digraph leading to globally optimal results satisfying all the high-level priors. The experimental evaluations of HLOIFT and its extensions, on medical, natural and synthetic images, indicate promising results comparable to the state-of-the-art methods, but with lower computational complexity. Compared to hierarchical segmentation by the min cut/max-flow algorithm, our approach is less restrictive, leading to globally optimal results in more general scenarios, and has a better running time.
id USP_30d18180df0836d6e6a491c32d842a38
oai_identifier_str oai:teses.usp.br:tde-12092019-110342
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Efficient hierarchical layered graph approach for multi-region segmentationAbordagem eficiente baseada em grafo hierárquico em camadas para a segmentação de múltiplas regiõesHierarchical image segmentationImage segmentation based on graphsInteractive segmentationMedical image segmentationMultiple object segmentationSegmentação de imagens baseada em grafosSegmentação de imagens médicasSegmentação de múltiplos objetosSegmentação hierárquica de imagensSegmentação interativaSuperpixelsSuperpixelsImage segmentation refers to the process of partitioning an image into meaningful regions of interest (objects) by assigning distinct labels to their composing pixels. Images are usually composed of multiple objects with distinctive features, thus requiring distinct high-level priors for their appropriate modeling. In order to obtain a good segmentation result, the segmentation method must attend all the individual priors of each object, as well as capture their inclusion/exclusion relations. However, many existing classical approaches do not include any form of structural information together with different high-level priors for each object into a single energy optimization. Consequently, they may be inappropriate in this context. We propose a novel efficient seed-based method for the multiple object segmentation of images based on graphs, named Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). It uses a tree of the relations between the image objects, being each object represented by a node. Each tree node may contain different individual high-level priors and defines a weighted digraph, named as layer. The layer graphs are then integrated into a hierarchical graph, considering the hierarchical relations of inclusion and exclusion. A single energy optimization is performed in the hierarchical layered weighted digraph leading to globally optimal results satisfying all the high-level priors. The experimental evaluations of HLOIFT and its extensions, on medical, natural and synthetic images, indicate promising results comparable to the state-of-the-art methods, but with lower computational complexity. Compared to hierarchical segmentation by the min cut/max-flow algorithm, our approach is less restrictive, leading to globally optimal results in more general scenarios, and has a better running time.A segmentação de imagem refere-se ao processo de particionar uma imagem em regiões significativas de interesse (objetos), atribuindo rótulos distintos aos seus pixels de composição. As imagens geralmente são compostas de vários objetos com características distintas, exigindo, assim, restrições de alto nível distintas para a sua modelagem apropriada. Para obter um bom resultado de segmentação, o método de segmentação deve atender a todas as restrições individuais de cada objeto, bem como capturar suas relações de inclusão/ exclusão. No entanto, muitas abordagens clássicas existentes não incluem nenhuma forma de informação estrutural, juntamente com diferentes restrições de alto nível para cada objeto em uma única otimização de energia. Consequentemente, elas podem ser inapropriadas nesse contexto. Estamos propondo um novo método eficiente baseado em sementes para a segmentação de múltiplos objetos em imagens baseado em grafos, chamado Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). Ele usa uma árvore das relações entre os objetos de imagem, sendo cada objeto representado por um nó. Cada nó da árvore pode conter diferentes restrições individuais de alto nível, que são usadas para definir um dígrafo ponderado, nomeado como camada. Os grafos das camadas são então integrados em um grafo hierárquico, considerando as relações hierárquicas de inclusão e exclusão. Uma otimização de energia única é realizada no dígrafo hierárquico em camadas, levando a resultados globalmente ótimos, satisfazendo todas as restrições de alto nível. As avaliações experimentais do HLOIFT e de suas extensões, em imagens médicas, naturais e sintéticas,indicam resultados promissores comparáveis aos métodos do estado-da-arte, mas com menor complexidade computacional. Comparada à segmentação hierárquica pelo algoritmo min-cut/max-flow, nossa abordagem é menos restritiva, levando a resultados globalmente ótimo sem cenários mais gerais e com melhor tempo de execução.Biblioteca Digitais de Teses e Dissertações da USPMiranda, Paulo Andre Vechiatto deLeon, Leissi Margarita Castaneda2019-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-12092019-110342/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T21:25:43Zoai:teses.usp.br:tde-12092019-110342Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T21:25:43Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Efficient hierarchical layered graph approach for multi-region segmentation
Abordagem eficiente baseada em grafo hierárquico em camadas para a segmentação de múltiplas regiões
title Efficient hierarchical layered graph approach for multi-region segmentation
spellingShingle Efficient hierarchical layered graph approach for multi-region segmentation
Leon, Leissi Margarita Castaneda
Hierarchical image segmentation
Image segmentation based on graphs
Interactive segmentation
Medical image segmentation
Multiple object segmentation
Segmentação de imagens baseada em grafos
Segmentação de imagens médicas
Segmentação de múltiplos objetos
Segmentação hierárquica de imagens
Segmentação interativa
Superpixels
Superpixels
title_short Efficient hierarchical layered graph approach for multi-region segmentation
title_full Efficient hierarchical layered graph approach for multi-region segmentation
title_fullStr Efficient hierarchical layered graph approach for multi-region segmentation
title_full_unstemmed Efficient hierarchical layered graph approach for multi-region segmentation
title_sort Efficient hierarchical layered graph approach for multi-region segmentation
author Leon, Leissi Margarita Castaneda
author_facet Leon, Leissi Margarita Castaneda
author_role author
dc.contributor.none.fl_str_mv Miranda, Paulo Andre Vechiatto de
dc.contributor.author.fl_str_mv Leon, Leissi Margarita Castaneda
dc.subject.por.fl_str_mv Hierarchical image segmentation
Image segmentation based on graphs
Interactive segmentation
Medical image segmentation
Multiple object segmentation
Segmentação de imagens baseada em grafos
Segmentação de imagens médicas
Segmentação de múltiplos objetos
Segmentação hierárquica de imagens
Segmentação interativa
Superpixels
Superpixels
topic Hierarchical image segmentation
Image segmentation based on graphs
Interactive segmentation
Medical image segmentation
Multiple object segmentation
Segmentação de imagens baseada em grafos
Segmentação de imagens médicas
Segmentação de múltiplos objetos
Segmentação hierárquica de imagens
Segmentação interativa
Superpixels
Superpixels
description Image segmentation refers to the process of partitioning an image into meaningful regions of interest (objects) by assigning distinct labels to their composing pixels. Images are usually composed of multiple objects with distinctive features, thus requiring distinct high-level priors for their appropriate modeling. In order to obtain a good segmentation result, the segmentation method must attend all the individual priors of each object, as well as capture their inclusion/exclusion relations. However, many existing classical approaches do not include any form of structural information together with different high-level priors for each object into a single energy optimization. Consequently, they may be inappropriate in this context. We propose a novel efficient seed-based method for the multiple object segmentation of images based on graphs, named Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). It uses a tree of the relations between the image objects, being each object represented by a node. Each tree node may contain different individual high-level priors and defines a weighted digraph, named as layer. The layer graphs are then integrated into a hierarchical graph, considering the hierarchical relations of inclusion and exclusion. A single energy optimization is performed in the hierarchical layered weighted digraph leading to globally optimal results satisfying all the high-level priors. The experimental evaluations of HLOIFT and its extensions, on medical, natural and synthetic images, indicate promising results comparable to the state-of-the-art methods, but with lower computational complexity. Compared to hierarchical segmentation by the min cut/max-flow algorithm, our approach is less restrictive, leading to globally optimal results in more general scenarios, and has a better running time.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-12092019-110342/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-12092019-110342/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809091706838056960