Meta-heurística BRKGA aplicada a um problema de programação de tarefas no ambiente flowshop híbrido.

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Mainieri, Guilherme Barroso
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3136/tde-26122014-152423/
Resumo: O presente trabalho aborda o ambiente de produção conhecido como flowshop híbrido. Devido a crescente complexidade dos sistemas de produção, este ambiente é frequentemente encontrado em situações reais de manufatura. No caso estudado existem estágios em série e em cada estágio existe um número de máquinas idênticas em paralelo. Os tempos de processamento em cada estágio são dependentes da tarefa, já a rota através do sistema é a mesma para todas as tarefas. O objetivo é minimizar o atraso total, ou seja, a soma do atraso de todas as tarefas. Um modelo de programação linear inteira mista é apresentado para este problema e, dada a sua complexidade, ele é abordado através de uma meta-heurística relativamente nova e que, conforme revisão da literatura, nunca foi aplicada a este problema. Conhecida por BRKGA (Biased Random-Key Genetic Algorithm), este método codifica as soluções de maneira a obter um melhor desempenho em comparação com algoritmos genéticos tradicionais. Com o objetivo de avaliar a melhor estratégia, são propostas diversas versões de BRKGA para o problema considerado. Estas versões buscam explorar características das melhores heurísticas construtivas da literatura, dentre estas: ordens direta e inversa de programação das tarefas dentro do ambiente produtivo, identificação do estágio gargalo e diferenciação da programação do gargalo dos demais estágios. Experimentos computacionais foram realizados com 432 problemas teste de grande porte. Os métodos apresentados são comparados entre si e os resultados mostraram que uma versão do BRKGA se destaca frente às demais, visto que ela atingiu o melhor resultado em 61% dos problemas. Destaca-se que o método de melhor desempenho da literatura obteve a melhor solução em apenas 15% dos problemas. Devido às dimensões dos problemas teste da literatura, não foi possível encontrar suas soluções ótimas. Deste modo, este trabalho propõe um novo limitante inferior para o mínimo atraso total. Além disso, 576 novos problemas teste de menores dimensões são propostos e seus resultados ótimos são utilizados para aprofundar as comparações. Os resultados deste experimento indicaram que o BRKGA proposto apresentou um bom desempenho visto que, na média, seus resultados estão apenas a 2,4% dos resultados ótimos.
id USP_840e13a03b9755410f5ae14821eaaa14
oai_identifier_str oai:teses.usp.br:tde-26122014-152423
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Meta-heurística BRKGA aplicada a um problema de programação de tarefas no ambiente flowshop híbrido.BRKGA meta-heuristic for a scheduling problem in hybrid flowshops.Atraso totalBRKGABRKGAFlexible flowshopFlowshop flexívelFlowshop híbridoHybrid flowshopTotal tardinessO presente trabalho aborda o ambiente de produção conhecido como flowshop híbrido. Devido a crescente complexidade dos sistemas de produção, este ambiente é frequentemente encontrado em situações reais de manufatura. No caso estudado existem estágios em série e em cada estágio existe um número de máquinas idênticas em paralelo. Os tempos de processamento em cada estágio são dependentes da tarefa, já a rota através do sistema é a mesma para todas as tarefas. O objetivo é minimizar o atraso total, ou seja, a soma do atraso de todas as tarefas. Um modelo de programação linear inteira mista é apresentado para este problema e, dada a sua complexidade, ele é abordado através de uma meta-heurística relativamente nova e que, conforme revisão da literatura, nunca foi aplicada a este problema. Conhecida por BRKGA (Biased Random-Key Genetic Algorithm), este método codifica as soluções de maneira a obter um melhor desempenho em comparação com algoritmos genéticos tradicionais. Com o objetivo de avaliar a melhor estratégia, são propostas diversas versões de BRKGA para o problema considerado. Estas versões buscam explorar características das melhores heurísticas construtivas da literatura, dentre estas: ordens direta e inversa de programação das tarefas dentro do ambiente produtivo, identificação do estágio gargalo e diferenciação da programação do gargalo dos demais estágios. Experimentos computacionais foram realizados com 432 problemas teste de grande porte. Os métodos apresentados são comparados entre si e os resultados mostraram que uma versão do BRKGA se destaca frente às demais, visto que ela atingiu o melhor resultado em 61% dos problemas. Destaca-se que o método de melhor desempenho da literatura obteve a melhor solução em apenas 15% dos problemas. Devido às dimensões dos problemas teste da literatura, não foi possível encontrar suas soluções ótimas. Deste modo, este trabalho propõe um novo limitante inferior para o mínimo atraso total. Além disso, 576 novos problemas teste de menores dimensões são propostos e seus resultados ótimos são utilizados para aprofundar as comparações. Os resultados deste experimento indicaram que o BRKGA proposto apresentou um bom desempenho visto que, na média, seus resultados estão apenas a 2,4% dos resultados ótimos.This work addresses a scheduling problem in hybrid flowshops. Due to the increasing complexity of production systems, this production environment is often encountered in real manufacturing situations. In hybrid flowshops, there are stages in series and, in each stage, a number of similar parallel machines. Processing times in each stage are dependent on the job, and the route through the system is the same for all jobs. The objective is to minimize the total tardiness, that is, the sum of all jobs tardiness. A mixed integer linear programming model is presented for the problem considered. Given its complexity, this problem is approached by a relatively new meta-heuristic, known as BRKGA (Biased Random-Key Genetic Algorithm). A literature review showed that BRKGA had never been applied to this problem. The BRKGA codes solutions in order to obtain a better performance compared with traditional genetic algorithms. Several versions of BRKGA were developed in order to evaluate the best strategy to solve the problem considered. These versions aim to exploit features of the best constructive heuristic from the literature, among them: scheduling jobs in direct and inverse order within the production environment, identification of the bottleneck stage and distinction of the bottleneck stage schedule from the others. Computational experiments were conducted with 432 large instances. The methods were compared and the results showed that one of these versions stood out against the others. This version achieved better results in 61% of instances, while the best heuristic from the literature achieved 15%. Due to the size of these instances, optimal solutions were not found. Therefore, this work develops a new lower bound for the minimum total tardiness. Additionally, in order to find optimal results, a set of 576 new instances is proposed. This experiment indicated that the BRKGA proposed performed well since, on average, their results are only 2.4% away from the optimal results.Biblioteca Digitais de Teses e Dissertações da USPRonconi, Debora PrettiMainieri, Guilherme Barroso2014-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3136/tde-26122014-152423/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:56Zoai:teses.usp.br:tde-26122014-152423Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Meta-heurística BRKGA aplicada a um problema de programação de tarefas no ambiente flowshop híbrido.
BRKGA meta-heuristic for a scheduling problem in hybrid flowshops.
title Meta-heurística BRKGA aplicada a um problema de programação de tarefas no ambiente flowshop híbrido.
spellingShingle Meta-heurística BRKGA aplicada a um problema de programação de tarefas no ambiente flowshop híbrido.
Mainieri, Guilherme Barroso
Atraso total
BRKGA
BRKGA
Flexible flowshop
Flowshop flexível
Flowshop híbrido
Hybrid flowshop
Total tardiness
title_short Meta-heurística BRKGA aplicada a um problema de programação de tarefas no ambiente flowshop híbrido.
title_full Meta-heurística BRKGA aplicada a um problema de programação de tarefas no ambiente flowshop híbrido.
title_fullStr Meta-heurística BRKGA aplicada a um problema de programação de tarefas no ambiente flowshop híbrido.
title_full_unstemmed Meta-heurística BRKGA aplicada a um problema de programação de tarefas no ambiente flowshop híbrido.
title_sort Meta-heurística BRKGA aplicada a um problema de programação de tarefas no ambiente flowshop híbrido.
author Mainieri, Guilherme Barroso
author_facet Mainieri, Guilherme Barroso
author_role author
dc.contributor.none.fl_str_mv Ronconi, Debora Pretti
dc.contributor.author.fl_str_mv Mainieri, Guilherme Barroso
dc.subject.por.fl_str_mv Atraso total
BRKGA
BRKGA
Flexible flowshop
Flowshop flexível
Flowshop híbrido
Hybrid flowshop
Total tardiness
topic Atraso total
BRKGA
BRKGA
Flexible flowshop
Flowshop flexível
Flowshop híbrido
Hybrid flowshop
Total tardiness
description O presente trabalho aborda o ambiente de produção conhecido como flowshop híbrido. Devido a crescente complexidade dos sistemas de produção, este ambiente é frequentemente encontrado em situações reais de manufatura. No caso estudado existem estágios em série e em cada estágio existe um número de máquinas idênticas em paralelo. Os tempos de processamento em cada estágio são dependentes da tarefa, já a rota através do sistema é a mesma para todas as tarefas. O objetivo é minimizar o atraso total, ou seja, a soma do atraso de todas as tarefas. Um modelo de programação linear inteira mista é apresentado para este problema e, dada a sua complexidade, ele é abordado através de uma meta-heurística relativamente nova e que, conforme revisão da literatura, nunca foi aplicada a este problema. Conhecida por BRKGA (Biased Random-Key Genetic Algorithm), este método codifica as soluções de maneira a obter um melhor desempenho em comparação com algoritmos genéticos tradicionais. Com o objetivo de avaliar a melhor estratégia, são propostas diversas versões de BRKGA para o problema considerado. Estas versões buscam explorar características das melhores heurísticas construtivas da literatura, dentre estas: ordens direta e inversa de programação das tarefas dentro do ambiente produtivo, identificação do estágio gargalo e diferenciação da programação do gargalo dos demais estágios. Experimentos computacionais foram realizados com 432 problemas teste de grande porte. Os métodos apresentados são comparados entre si e os resultados mostraram que uma versão do BRKGA se destaca frente às demais, visto que ela atingiu o melhor resultado em 61% dos problemas. Destaca-se que o método de melhor desempenho da literatura obteve a melhor solução em apenas 15% dos problemas. Devido às dimensões dos problemas teste da literatura, não foi possível encontrar suas soluções ótimas. Deste modo, este trabalho propõe um novo limitante inferior para o mínimo atraso total. Além disso, 576 novos problemas teste de menores dimensões são propostos e seus resultados ótimos são utilizados para aprofundar as comparações. Os resultados deste experimento indicaram que o BRKGA proposto apresentou um bom desempenho visto que, na média, seus resultados estão apenas a 2,4% dos resultados ótimos.
publishDate 2014
dc.date.none.fl_str_mv 2014-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3136/tde-26122014-152423/
url http://www.teses.usp.br/teses/disponiveis/3/3136/tde-26122014-152423/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809092167956692992