Técnicas de classificação hierárquica multirrótulo

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Cerri, Ricardo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06042010-151017/
Resumo: Muitos dos problemas de classificação descritos na literatura de Aprendizado de Máquina e Mineração de Dados dizem respeito à classificação de dados em que cada exemplo a ser classificado pertence a um conjunto finito, e geralmente pequeno, de classes que estão em um mesmo nível. Vários problemas de classificação, entretanto, são de natureza hierárquica, em que classes podem ser subclasses ou superclasses de outras classes. Em muitos problemas hierárquicos, principalmente no campo da Bioinformática, um ou mais exemplos podem ser associados a mais de uma classe simultaneamente. Esses problemas são conhecidos como problemas de classificação hierárquica tirrótulo. Nesta pesquisa, foram investigadas diferentes técnicas para lidar com esses tipos de problemas. Essas técnicas são baseadas em duas abordagens: local ou Top-Down e global ou One-Shot. Três técnicas descritas na literatura foram utilizadas. A primeira delas, chamada HMC-BR, é baseada na abordagem Top-Down, e utiliza uma estratégia de classificação binária chamada Um-Contra-Todos. As outras duas técnicas, baseadas na abordagem One-Shot, são chamadas C4.5H (uma extensão do algoritmo de indução de àrvores de decis~ao C4.5), e de Clus-HMC (baseada na noção de Predictive Clustering Trees, em que àrvores de decisão são estruturadas como uma hierarquia de grupos (clusters)). Além das técnicas descritas na literatura, duas novas técnicas foram propostas e implementadas nesta pesquisa, chamadas de HMC-LP e HMC-CT. Essas técnicas são variações hierárquicas de técnicas de classificação multirrótulo não hierárquicas. A técnica HMC-LP utiliza uma estratégia de combinação de classes e a técnica HMC-CT utiliza uma estratégia de decomposição de classes. Para a avaliação das técnicas, foram utilizadas medidas específicas para esse tipo de classificação. Os resultados experimentais mostraram que as técnicas propostas obtiveram desempenhos superiores ou semelhantes aos das técnicas descritas na literatura, dependendo da medida de avaliação utilizada e das características dos conjuntos de dados
id USP_8925c58f14af34512e60945c88310ad0
oai_identifier_str oai:teses.usp.br:tde-06042010-151017
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Técnicas de classificação hierárquica multirrótuloHierarchical multilabel classification techniquesAprendizado de máquinaBioinformáticaBioinformaticsClassificaçãoClassificationHierarchicalHierárquiaMachine learningMultilabelMultirrótuloMuitos dos problemas de classificação descritos na literatura de Aprendizado de Máquina e Mineração de Dados dizem respeito à classificação de dados em que cada exemplo a ser classificado pertence a um conjunto finito, e geralmente pequeno, de classes que estão em um mesmo nível. Vários problemas de classificação, entretanto, são de natureza hierárquica, em que classes podem ser subclasses ou superclasses de outras classes. Em muitos problemas hierárquicos, principalmente no campo da Bioinformática, um ou mais exemplos podem ser associados a mais de uma classe simultaneamente. Esses problemas são conhecidos como problemas de classificação hierárquica tirrótulo. Nesta pesquisa, foram investigadas diferentes técnicas para lidar com esses tipos de problemas. Essas técnicas são baseadas em duas abordagens: local ou Top-Down e global ou One-Shot. Três técnicas descritas na literatura foram utilizadas. A primeira delas, chamada HMC-BR, é baseada na abordagem Top-Down, e utiliza uma estratégia de classificação binária chamada Um-Contra-Todos. As outras duas técnicas, baseadas na abordagem One-Shot, são chamadas C4.5H (uma extensão do algoritmo de indução de àrvores de decis~ao C4.5), e de Clus-HMC (baseada na noção de Predictive Clustering Trees, em que àrvores de decisão são estruturadas como uma hierarquia de grupos (clusters)). Além das técnicas descritas na literatura, duas novas técnicas foram propostas e implementadas nesta pesquisa, chamadas de HMC-LP e HMC-CT. Essas técnicas são variações hierárquicas de técnicas de classificação multirrótulo não hierárquicas. A técnica HMC-LP utiliza uma estratégia de combinação de classes e a técnica HMC-CT utiliza uma estratégia de decomposição de classes. Para a avaliação das técnicas, foram utilizadas medidas específicas para esse tipo de classificação. Os resultados experimentais mostraram que as técnicas propostas obtiveram desempenhos superiores ou semelhantes aos das técnicas descritas na literatura, dependendo da medida de avaliação utilizada e das características dos conjuntos de dadosMany of the classification problems described in the literature of Machine Learning and Data Mining are related to data classification where each example to be classified belongs to a finite, and usually small, set of classes located at the same level. There are many classification problems, however, that are of hierarchical nature, where classes can be subclasses or superclasses of other classes. In many hierarchical problems, mainly in the Bioinformatics field, one or more examples can be associated to more than one class simultaneously. These problems are known as hierarchical multilabel classification problems. In this research, different techniques to deal with these kinds of problems were investigated, based on two approaches, named local or Top-Down and global or One-Shot. Three techniques described in the literature were used. The first one, named HMC-BR, is based on the Top-Down approach, and uses a binary classification strategy named One-Against-All. The other two techniques, based on the One-Shot approach, are named C4.5H (an extension of the decision tree induction algorithm C4.5), and Clus-HMC (based on the notion of Predictive Clustering Trees, where decision trees are structured as a hierarchy of clusters). In addition to the techniques described in the literature, two new techniques were proposed, named HMC-LP and HMC-CT. These techniques are hierarchical variations of non-hierarchical multilabel classification techniques. The HMCLP technique uses a label combination strategy and the HMC-CT technique uses a label decomposition strategy. The evaluation of the techniques was performed using specific metrics for this kind of classification. The experimental results showed that the proposed techniques achieved better or similar performances than the techniques described in the literature, depending on the evaluation metric used and on the characteristics of the datasetsBiblioteca Digitais de Teses e Dissertações da USPCarvalho, André Carlos Ponce de Leon Ferreira deCerri, Ricardo2010-02-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-06042010-151017/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:05Zoai:teses.usp.br:tde-06042010-151017Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Técnicas de classificação hierárquica multirrótulo
Hierarchical multilabel classification techniques
title Técnicas de classificação hierárquica multirrótulo
spellingShingle Técnicas de classificação hierárquica multirrótulo
Cerri, Ricardo
Aprendizado de máquina
Bioinformática
Bioinformatics
Classificação
Classification
Hierarchical
Hierárquia
Machine learning
Multilabel
Multirrótulo
title_short Técnicas de classificação hierárquica multirrótulo
title_full Técnicas de classificação hierárquica multirrótulo
title_fullStr Técnicas de classificação hierárquica multirrótulo
title_full_unstemmed Técnicas de classificação hierárquica multirrótulo
title_sort Técnicas de classificação hierárquica multirrótulo
author Cerri, Ricardo
author_facet Cerri, Ricardo
author_role author
dc.contributor.none.fl_str_mv Carvalho, André Carlos Ponce de Leon Ferreira de
dc.contributor.author.fl_str_mv Cerri, Ricardo
dc.subject.por.fl_str_mv Aprendizado de máquina
Bioinformática
Bioinformatics
Classificação
Classification
Hierarchical
Hierárquia
Machine learning
Multilabel
Multirrótulo
topic Aprendizado de máquina
Bioinformática
Bioinformatics
Classificação
Classification
Hierarchical
Hierárquia
Machine learning
Multilabel
Multirrótulo
description Muitos dos problemas de classificação descritos na literatura de Aprendizado de Máquina e Mineração de Dados dizem respeito à classificação de dados em que cada exemplo a ser classificado pertence a um conjunto finito, e geralmente pequeno, de classes que estão em um mesmo nível. Vários problemas de classificação, entretanto, são de natureza hierárquica, em que classes podem ser subclasses ou superclasses de outras classes. Em muitos problemas hierárquicos, principalmente no campo da Bioinformática, um ou mais exemplos podem ser associados a mais de uma classe simultaneamente. Esses problemas são conhecidos como problemas de classificação hierárquica tirrótulo. Nesta pesquisa, foram investigadas diferentes técnicas para lidar com esses tipos de problemas. Essas técnicas são baseadas em duas abordagens: local ou Top-Down e global ou One-Shot. Três técnicas descritas na literatura foram utilizadas. A primeira delas, chamada HMC-BR, é baseada na abordagem Top-Down, e utiliza uma estratégia de classificação binária chamada Um-Contra-Todos. As outras duas técnicas, baseadas na abordagem One-Shot, são chamadas C4.5H (uma extensão do algoritmo de indução de àrvores de decis~ao C4.5), e de Clus-HMC (baseada na noção de Predictive Clustering Trees, em que àrvores de decisão são estruturadas como uma hierarquia de grupos (clusters)). Além das técnicas descritas na literatura, duas novas técnicas foram propostas e implementadas nesta pesquisa, chamadas de HMC-LP e HMC-CT. Essas técnicas são variações hierárquicas de técnicas de classificação multirrótulo não hierárquicas. A técnica HMC-LP utiliza uma estratégia de combinação de classes e a técnica HMC-CT utiliza uma estratégia de decomposição de classes. Para a avaliação das técnicas, foram utilizadas medidas específicas para esse tipo de classificação. Os resultados experimentais mostraram que as técnicas propostas obtiveram desempenhos superiores ou semelhantes aos das técnicas descritas na literatura, dependendo da medida de avaliação utilizada e das características dos conjuntos de dados
publishDate 2010
dc.date.none.fl_str_mv 2010-02-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06042010-151017/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06042010-151017/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257939694321664