Método de mapeamento espaço-espectral em imagens multi-espectrais e sua aplicação em tecidos vegetais

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Falvo, Maurício
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-15012016-164547/
Resumo: Imagens multiespectrais são utilizadas em diferentes aplicações, que vão desde sensoriamento remoto a processos médicos. No caso de imagens multiespectrais oriundas de microscopia confocal de varredura à laser (Confocal Laser Scanning Microscopy-CLSM), a extração da informação se inicia pela conversão das assinaturas espectrais, em uma imagem RGB. Esta imagem é a referência para a seleção da região de interesse, da qual se obtém a assinatura espectral média, originada do arquivo multiespectral (LSM). Mesmo utilizando um padrão muito bem estabelecido de conversão, alguns pontos devem ser considerados: i) o processo de conversão reduz a informação, a uma ordem de 10-145%; ii) a cor é uma experiência sensorial, subjetiva e pessoal, interferindo na seleção da região de interesse e; iii) a assinatura é obtida pela média espectral, da região de interesse, selecionada manualmente.Assim, esta tese de doutorado propõem um método de mapeamento e visualização das informações de imagens multiespectrais, combinando um algoritmo de agrupamento não supervisionado(kmeans) e um algoritmo que define uma paleta de cores coerentes com a informação espectral das regiões mapeadas. Aplicou-se o método em três casos de estudos de tecidos vegetais: i) no pré-tratamento de paredes celulares da cana-de-açúcar; ii) na plasticidade foliar do Jacaranda caroba e; iii) no uso de assinaturas espectrais na classificação de plantas do Cerrado. Os resultados demonstraram que o método é bastante robusto, permitindo de forma inovadora a: visualização, análise e comparação de imagens multiespectrais qualitativa e quantitativamente, e que seu uso é viável em qualquer área de pesquisa que utilize imagens multiespectrais.
id USP_904139031ea2cabb9b8f42c3817a088b
oai_identifier_str oai:teses.usp.br:tde-15012016-164547
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Método de mapeamento espaço-espectral em imagens multi-espectrais e sua aplicação em tecidos vegetaisSpatio-spectral mapping method in multispectral images and their application in plant tissuesCLSMCLSMConfocal microscopyFluorescenceFluorescênciaImagens multiespectraisMicroscopia confocalMultispectral imagesPlant tissueTecido vegetalImagens multiespectrais são utilizadas em diferentes aplicações, que vão desde sensoriamento remoto a processos médicos. No caso de imagens multiespectrais oriundas de microscopia confocal de varredura à laser (Confocal Laser Scanning Microscopy-CLSM), a extração da informação se inicia pela conversão das assinaturas espectrais, em uma imagem RGB. Esta imagem é a referência para a seleção da região de interesse, da qual se obtém a assinatura espectral média, originada do arquivo multiespectral (LSM). Mesmo utilizando um padrão muito bem estabelecido de conversão, alguns pontos devem ser considerados: i) o processo de conversão reduz a informação, a uma ordem de 10-145%; ii) a cor é uma experiência sensorial, subjetiva e pessoal, interferindo na seleção da região de interesse e; iii) a assinatura é obtida pela média espectral, da região de interesse, selecionada manualmente.Assim, esta tese de doutorado propõem um método de mapeamento e visualização das informações de imagens multiespectrais, combinando um algoritmo de agrupamento não supervisionado(kmeans) e um algoritmo que define uma paleta de cores coerentes com a informação espectral das regiões mapeadas. Aplicou-se o método em três casos de estudos de tecidos vegetais: i) no pré-tratamento de paredes celulares da cana-de-açúcar; ii) na plasticidade foliar do Jacaranda caroba e; iii) no uso de assinaturas espectrais na classificação de plantas do Cerrado. Os resultados demonstraram que o método é bastante robusto, permitindo de forma inovadora a: visualização, análise e comparação de imagens multiespectrais qualitativa e quantitativamente, e que seu uso é viável em qualquer área de pesquisa que utilize imagens multiespectrais.Multispectral images are used in different applications, ranging from remote sensing images to medical images. In the case of multispectral images derived from confocal laser scanning microscopy (CLSM), the extraction of information begins with the conversion of spectral signatures in an RGB image. This is the reference for selecting the region of interest, from which it gets the average spectral signature, originated from multispectral file (LSM). Even using a very well established pattern of conversion, some points should be considered: i) the conversion process reduces the information on the order of 10-145%; ii) the color is a sensory experience, subjective and personal, interfering in the selection of the interest region and; the signature is obtained by the spectral average, from interest region which is selected manually. Thus, this doctoral thesis proposes a method of mapping and visualization of multispectral imaging information, combining an unsupervised clustering algorithm (kmeans) and an algorithm that defines a consistent color palette with the spectral information of mapped regions. The proposed method was applied in three cases plant tissue studies: i) in the pre-treating the cell walls of sugarcane; ii) in the leaf plasticity of Jacaranda caroba; iii) in the use of spectral signatures in the Cerrado plant classification. The results showed that the proposed method is quite robust. It presents innovation to the visualization and analysis of multispectral images and makes possible a qualitative and quantitative comparison of a group of multispectral images. Besides that, its use is feasible in any area of research, which are using multispectral images.Biblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezFalvo, Maurício2015-10-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-15012016-164547/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-15012016-164547Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Método de mapeamento espaço-espectral em imagens multi-espectrais e sua aplicação em tecidos vegetais
Spatio-spectral mapping method in multispectral images and their application in plant tissues
title Método de mapeamento espaço-espectral em imagens multi-espectrais e sua aplicação em tecidos vegetais
spellingShingle Método de mapeamento espaço-espectral em imagens multi-espectrais e sua aplicação em tecidos vegetais
Falvo, Maurício
CLSM
CLSM
Confocal microscopy
Fluorescence
Fluorescência
Imagens multiespectrais
Microscopia confocal
Multispectral images
Plant tissue
Tecido vegetal
title_short Método de mapeamento espaço-espectral em imagens multi-espectrais e sua aplicação em tecidos vegetais
title_full Método de mapeamento espaço-espectral em imagens multi-espectrais e sua aplicação em tecidos vegetais
title_fullStr Método de mapeamento espaço-espectral em imagens multi-espectrais e sua aplicação em tecidos vegetais
title_full_unstemmed Método de mapeamento espaço-espectral em imagens multi-espectrais e sua aplicação em tecidos vegetais
title_sort Método de mapeamento espaço-espectral em imagens multi-espectrais e sua aplicação em tecidos vegetais
author Falvo, Maurício
author_facet Falvo, Maurício
author_role author
dc.contributor.none.fl_str_mv Bruno, Odemir Martinez
dc.contributor.author.fl_str_mv Falvo, Maurício
dc.subject.por.fl_str_mv CLSM
CLSM
Confocal microscopy
Fluorescence
Fluorescência
Imagens multiespectrais
Microscopia confocal
Multispectral images
Plant tissue
Tecido vegetal
topic CLSM
CLSM
Confocal microscopy
Fluorescence
Fluorescência
Imagens multiespectrais
Microscopia confocal
Multispectral images
Plant tissue
Tecido vegetal
description Imagens multiespectrais são utilizadas em diferentes aplicações, que vão desde sensoriamento remoto a processos médicos. No caso de imagens multiespectrais oriundas de microscopia confocal de varredura à laser (Confocal Laser Scanning Microscopy-CLSM), a extração da informação se inicia pela conversão das assinaturas espectrais, em uma imagem RGB. Esta imagem é a referência para a seleção da região de interesse, da qual se obtém a assinatura espectral média, originada do arquivo multiespectral (LSM). Mesmo utilizando um padrão muito bem estabelecido de conversão, alguns pontos devem ser considerados: i) o processo de conversão reduz a informação, a uma ordem de 10-145%; ii) a cor é uma experiência sensorial, subjetiva e pessoal, interferindo na seleção da região de interesse e; iii) a assinatura é obtida pela média espectral, da região de interesse, selecionada manualmente.Assim, esta tese de doutorado propõem um método de mapeamento e visualização das informações de imagens multiespectrais, combinando um algoritmo de agrupamento não supervisionado(kmeans) e um algoritmo que define uma paleta de cores coerentes com a informação espectral das regiões mapeadas. Aplicou-se o método em três casos de estudos de tecidos vegetais: i) no pré-tratamento de paredes celulares da cana-de-açúcar; ii) na plasticidade foliar do Jacaranda caroba e; iii) no uso de assinaturas espectrais na classificação de plantas do Cerrado. Os resultados demonstraram que o método é bastante robusto, permitindo de forma inovadora a: visualização, análise e comparação de imagens multiespectrais qualitativa e quantitativamente, e que seu uso é viável em qualquer área de pesquisa que utilize imagens multiespectrais.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-15012016-164547/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-15012016-164547/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258137841631232