Automating land cover change detection: a deep learning based approach to map deforested areas

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Raian Vargas Maretto
Orientador(a): Leila Maria Garcia Fonseca, Thales Sehn Körting
Banca de defesa: Rafael Duarte Coelho dos Santos, Rogério Galante Negri, Nathan Jacobs
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Instituto Nacional de Pesquisas Espaciais (INPE)
Programa de Pós-Graduação: Programa de Pós-Graduação do INPE em Computação Aplicada
Departamento: Não Informado pela instituição
País: BR
Link de acesso: http://urlib.net/sid.inpe.br/mtc-m21c/2020/06.09.11.59
Resumo: Accurate maps are an important tool for informing effective deforestation containment policies. The main existing mapping approaches to produce these maps are largely manual, requiring significant effort by trained experts. In recent years, Deep Learning (DL) have emerged becoming the state-of-the-art in Machine Learning and Pattern Recognition. Despite its effectiveness, the computational concepts behind these methods are very complex, as well as the computational platforms available to implement it. This complexity makes it difficult for a Remote Sensing analyst without a strong programming background to perform image analysis using those methods. Furthermore, despite DL have been successfully applied in many Remote Sensing studies, most of those have focused on the detection of very specific urban targets in high-resolution imagery, due to the high availability of reference and benchmark datasets with these characteristics. The lower number of studies on the application of DL to medium and low-resolution imagery and to another types of targets have been attributed, among other reasons, to the lack of reference and benchmark datasets for these types of images. Within this context, this thesis has three main contributions. First, we developed DeepGeo, a toolbox that provides modern DL algorithms for Remote Sensing image classification and analysis. DeepGeo focuses on providing easy-to-use and extensible methods, making it easier to those analysts without strong programming skills to use those DL methods. It is distributed as free and open source package and is available at https://github.com/rvmaretto/deepgeo. Second, we present the PRODES-Vision collection of dataset, a collection of reference dataset of deforested areas, based on PRODES deforestation maps, to train Deep Neural Networks, as well as a methodology to the generation of reference datasets based on thematic maps. We believe that these datasets would encourage the development of new methods for automatically map Land Use and Land Cover changes. And finally, we propose a fully automatic mapping approach based on spatio-temporal convolutional neural networks aiming to reduce the effort of mapping deforested areas. Furthermore, we propose two spatio-temporal variations of the U-Net architecture, which make it possible to incorporate both spatial and temporal contexts. Using a real-world dataset, we show that our method outperforms a traditional UNet architecture, achieving approximately 95% accuracy. We also demonstrate that our preprocessing protocol reduces the impact of noise in the training dataset. To demonstrate the scalability of our method, it was applied to map deforestation over the entire Pará State, achieving approximately 94% overall accuracy. And finally, to demonstrate its applicability to another areas, it was applied to a region of the Brazilian Cerrado, achieving approximately 91% overall accuracy.
id INPE_94517a2552b07c6b98e1ff1df0dd8b95
oai_identifier_str oai:urlib.net:sid.inpe.br/mtc-m21c/2020/06.09.11.59.26-0
network_acronym_str INPE
network_name_str Biblioteca Digital de Teses e Dissertações do INPE
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisAutomating land cover change detection: a deep learning based approach to map deforested areasMapeamento automático de mudanças na cobertura da terra: uma abordagem baseada em deep learning para mapeamento de áreas desmatadas2020-03-20Leila Maria Garcia FonsecaThales Sehn KörtingRafael Duarte Coelho dos SantosRogério Galante NegriNathan JacobsRaian Vargas MarettoInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Computação AplicadaINPEBRdeep learningmachine learningdeforestation mappingconvolutional neural networksdeep neural networksaprendizado de máquinamapeamento de desmatamentoredes neurais convolucionaisredes neurais profundasAccurate maps are an important tool for informing effective deforestation containment policies. The main existing mapping approaches to produce these maps are largely manual, requiring significant effort by trained experts. In recent years, Deep Learning (DL) have emerged becoming the state-of-the-art in Machine Learning and Pattern Recognition. Despite its effectiveness, the computational concepts behind these methods are very complex, as well as the computational platforms available to implement it. This complexity makes it difficult for a Remote Sensing analyst without a strong programming background to perform image analysis using those methods. Furthermore, despite DL have been successfully applied in many Remote Sensing studies, most of those have focused on the detection of very specific urban targets in high-resolution imagery, due to the high availability of reference and benchmark datasets with these characteristics. The lower number of studies on the application of DL to medium and low-resolution imagery and to another types of targets have been attributed, among other reasons, to the lack of reference and benchmark datasets for these types of images. Within this context, this thesis has three main contributions. First, we developed DeepGeo, a toolbox that provides modern DL algorithms for Remote Sensing image classification and analysis. DeepGeo focuses on providing easy-to-use and extensible methods, making it easier to those analysts without strong programming skills to use those DL methods. It is distributed as free and open source package and is available at https://github.com/rvmaretto/deepgeo. Second, we present the PRODES-Vision collection of dataset, a collection of reference dataset of deforested areas, based on PRODES deforestation maps, to train Deep Neural Networks, as well as a methodology to the generation of reference datasets based on thematic maps. We believe that these datasets would encourage the development of new methods for automatically map Land Use and Land Cover changes. And finally, we propose a fully automatic mapping approach based on spatio-temporal convolutional neural networks aiming to reduce the effort of mapping deforested areas. Furthermore, we propose two spatio-temporal variations of the U-Net architecture, which make it possible to incorporate both spatial and temporal contexts. Using a real-world dataset, we show that our method outperforms a traditional UNet architecture, achieving approximately 95% accuracy. We also demonstrate that our preprocessing protocol reduces the impact of noise in the training dataset. To demonstrate the scalability of our method, it was applied to map deforestation over the entire Pará State, achieving approximately 94% overall accuracy. And finally, to demonstrate its applicability to another areas, it was applied to a region of the Brazilian Cerrado, achieving approximately 91% overall accuracy.Mapas precisos constituem uma importante ferramenta para fornecer informações para políticas efetivas de combate ao desmatamento. Os principais métodos existentes para este tipo de mapeamento são manuais, demandando grande esforço de especialistas treinados. Nos últimos anos, métodos de Deep Learning (DL) se tornaram o estado-da-arte em Machine Learning e Reconhecimento de Padrões. Porém, apesar da eficácia destes métodos, eles são constituídos de conceitos computacionais complexos, assim como as plataformas disponíveis para implementação dos mesmos. Esta complexidade torna mais difícil para um analista de Sensoriamento Remoto sem um conhecimento profundo em programação executar classificações e análises baseadas nestes métodos. Além disso, apesar dos métodos de DL terem sido aplicados com sucesso em muitos estudos de Sensoriamento Remoto, a maioria destes estudos foca na detecção de alvos urbanos muito específicos em imagens de alta resolução, devido à grande disponibilidade de datasets de referência e benchmarks com estas características. O baixo número de estudos aplicando métodos de DL à imagens de média e baixa resolução espacial e à outros tipos de alvos tem sido atribuído, entre outras razões, à falta de datasets de referência e benchmarks para para este tipo de imagens. Neste contexto, esta tese tem três principais contribuições. Primeiramente, desenvolvemos a plataforma DeepGeo, que dispõe de algoritmos modernos de DL para a classificação e análise de imagens de Sensoriamento Remoto. A plataforma DeepGeo foca em fornecer métodos extensíveis e fáceis de usar, facilitando assim que analistas sem um profundo conhecimento em programação usem métodos de DL em suas análises. A plataforma é distribuída como um pacote gratuito e de código aberto, disponível em https://github.com/rvmaretto/deepgeo. Segundo, apresentamos a coleção de datasets PRODES-Vision, uma coleção de datasets de referência de áreas desmatadas, baseado nos mapas de desmatamento fornecidos pelo programa PRODES, para o treinamento de Redes Neurais Profundas. Acreditamos que estes datasets podem encorajar o desenvolvimento de novos métodos para a automatização do mapeamento de mudanças no uso e cobertura da terra. Por fim, visando reduzir o esforço do mapeamento de áreas desmatadas, propomos uma abordagem totalmente automática baseada em Redes Neurais Convolucionais espaço-temporais. Nesta abordagem, propomos duas variações espaço-temporais da arquitetura U-Net, que possibilita incorporar ambos os contextos espacial e temporal. Usando um dataset real, mostramos que nosso método supera a U-Net tradicional, conseguindo uma acurácia de aproximadamente 95%. Demonstramos também que o protocolo de pré-processamento proposto reduz o impacto de ruídos nos datasets de treinamento. Para demonstrar a escalabilidade de nosso método, este foi aplicado ao mapeamento do desmatamento em todo o estado do Pará, com uma acurácia aproximada de 94%. Finalmente, para demonstrar a aplicabilidade para outras áreas, o mesmo foi aplicado à uma área do Cerrado Brasileiro, obtendo uma acurácia de aproximadamente 91%.http://urlib.net/sid.inpe.br/mtc-m21c/2020/06.09.11.59info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:56:18Zoai:urlib.net:sid.inpe.br/mtc-m21c/2020/06.09.11.59.26-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:56:19.392Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false
dc.title.en.fl_str_mv Automating land cover change detection: a deep learning based approach to map deforested areas
dc.title.alternative.pt.fl_str_mv Mapeamento automático de mudanças na cobertura da terra: uma abordagem baseada em deep learning para mapeamento de áreas desmatadas
title Automating land cover change detection: a deep learning based approach to map deforested areas
spellingShingle Automating land cover change detection: a deep learning based approach to map deforested areas
Raian Vargas Maretto
title_short Automating land cover change detection: a deep learning based approach to map deforested areas
title_full Automating land cover change detection: a deep learning based approach to map deforested areas
title_fullStr Automating land cover change detection: a deep learning based approach to map deforested areas
title_full_unstemmed Automating land cover change detection: a deep learning based approach to map deforested areas
title_sort Automating land cover change detection: a deep learning based approach to map deforested areas
author Raian Vargas Maretto
author_facet Raian Vargas Maretto
author_role author
dc.contributor.advisor1.fl_str_mv Leila Maria Garcia Fonseca
dc.contributor.advisor2.fl_str_mv Thales Sehn Körting
dc.contributor.referee1.fl_str_mv Rafael Duarte Coelho dos Santos
dc.contributor.referee2.fl_str_mv Rogério Galante Negri
dc.contributor.referee3.fl_str_mv Nathan Jacobs
dc.contributor.author.fl_str_mv Raian Vargas Maretto
contributor_str_mv Leila Maria Garcia Fonseca
Thales Sehn Körting
Rafael Duarte Coelho dos Santos
Rogério Galante Negri
Nathan Jacobs
dc.description.abstract.por.fl_txt_mv Accurate maps are an important tool for informing effective deforestation containment policies. The main existing mapping approaches to produce these maps are largely manual, requiring significant effort by trained experts. In recent years, Deep Learning (DL) have emerged becoming the state-of-the-art in Machine Learning and Pattern Recognition. Despite its effectiveness, the computational concepts behind these methods are very complex, as well as the computational platforms available to implement it. This complexity makes it difficult for a Remote Sensing analyst without a strong programming background to perform image analysis using those methods. Furthermore, despite DL have been successfully applied in many Remote Sensing studies, most of those have focused on the detection of very specific urban targets in high-resolution imagery, due to the high availability of reference and benchmark datasets with these characteristics. The lower number of studies on the application of DL to medium and low-resolution imagery and to another types of targets have been attributed, among other reasons, to the lack of reference and benchmark datasets for these types of images. Within this context, this thesis has three main contributions. First, we developed DeepGeo, a toolbox that provides modern DL algorithms for Remote Sensing image classification and analysis. DeepGeo focuses on providing easy-to-use and extensible methods, making it easier to those analysts without strong programming skills to use those DL methods. It is distributed as free and open source package and is available at https://github.com/rvmaretto/deepgeo. Second, we present the PRODES-Vision collection of dataset, a collection of reference dataset of deforested areas, based on PRODES deforestation maps, to train Deep Neural Networks, as well as a methodology to the generation of reference datasets based on thematic maps. We believe that these datasets would encourage the development of new methods for automatically map Land Use and Land Cover changes. And finally, we propose a fully automatic mapping approach based on spatio-temporal convolutional neural networks aiming to reduce the effort of mapping deforested areas. Furthermore, we propose two spatio-temporal variations of the U-Net architecture, which make it possible to incorporate both spatial and temporal contexts. Using a real-world dataset, we show that our method outperforms a traditional UNet architecture, achieving approximately 95% accuracy. We also demonstrate that our preprocessing protocol reduces the impact of noise in the training dataset. To demonstrate the scalability of our method, it was applied to map deforestation over the entire Pará State, achieving approximately 94% overall accuracy. And finally, to demonstrate its applicability to another areas, it was applied to a region of the Brazilian Cerrado, achieving approximately 91% overall accuracy.
Mapas precisos constituem uma importante ferramenta para fornecer informações para políticas efetivas de combate ao desmatamento. Os principais métodos existentes para este tipo de mapeamento são manuais, demandando grande esforço de especialistas treinados. Nos últimos anos, métodos de Deep Learning (DL) se tornaram o estado-da-arte em Machine Learning e Reconhecimento de Padrões. Porém, apesar da eficácia destes métodos, eles são constituídos de conceitos computacionais complexos, assim como as plataformas disponíveis para implementação dos mesmos. Esta complexidade torna mais difícil para um analista de Sensoriamento Remoto sem um conhecimento profundo em programação executar classificações e análises baseadas nestes métodos. Além disso, apesar dos métodos de DL terem sido aplicados com sucesso em muitos estudos de Sensoriamento Remoto, a maioria destes estudos foca na detecção de alvos urbanos muito específicos em imagens de alta resolução, devido à grande disponibilidade de datasets de referência e benchmarks com estas características. O baixo número de estudos aplicando métodos de DL à imagens de média e baixa resolução espacial e à outros tipos de alvos tem sido atribuído, entre outras razões, à falta de datasets de referência e benchmarks para para este tipo de imagens. Neste contexto, esta tese tem três principais contribuições. Primeiramente, desenvolvemos a plataforma DeepGeo, que dispõe de algoritmos modernos de DL para a classificação e análise de imagens de Sensoriamento Remoto. A plataforma DeepGeo foca em fornecer métodos extensíveis e fáceis de usar, facilitando assim que analistas sem um profundo conhecimento em programação usem métodos de DL em suas análises. A plataforma é distribuída como um pacote gratuito e de código aberto, disponível em https://github.com/rvmaretto/deepgeo. Segundo, apresentamos a coleção de datasets PRODES-Vision, uma coleção de datasets de referência de áreas desmatadas, baseado nos mapas de desmatamento fornecidos pelo programa PRODES, para o treinamento de Redes Neurais Profundas. Acreditamos que estes datasets podem encorajar o desenvolvimento de novos métodos para a automatização do mapeamento de mudanças no uso e cobertura da terra. Por fim, visando reduzir o esforço do mapeamento de áreas desmatadas, propomos uma abordagem totalmente automática baseada em Redes Neurais Convolucionais espaço-temporais. Nesta abordagem, propomos duas variações espaço-temporais da arquitetura U-Net, que possibilita incorporar ambos os contextos espacial e temporal. Usando um dataset real, mostramos que nosso método supera a U-Net tradicional, conseguindo uma acurácia de aproximadamente 95%. Demonstramos também que o protocolo de pré-processamento proposto reduz o impacto de ruídos nos datasets de treinamento. Para demonstrar a escalabilidade de nosso método, este foi aplicado ao mapeamento do desmatamento em todo o estado do Pará, com uma acurácia aproximada de 94%. Finalmente, para demonstrar a aplicabilidade para outras áreas, o mesmo foi aplicado à uma área do Cerrado Brasileiro, obtendo uma acurácia de aproximadamente 91%.
description Accurate maps are an important tool for informing effective deforestation containment policies. The main existing mapping approaches to produce these maps are largely manual, requiring significant effort by trained experts. In recent years, Deep Learning (DL) have emerged becoming the state-of-the-art in Machine Learning and Pattern Recognition. Despite its effectiveness, the computational concepts behind these methods are very complex, as well as the computational platforms available to implement it. This complexity makes it difficult for a Remote Sensing analyst without a strong programming background to perform image analysis using those methods. Furthermore, despite DL have been successfully applied in many Remote Sensing studies, most of those have focused on the detection of very specific urban targets in high-resolution imagery, due to the high availability of reference and benchmark datasets with these characteristics. The lower number of studies on the application of DL to medium and low-resolution imagery and to another types of targets have been attributed, among other reasons, to the lack of reference and benchmark datasets for these types of images. Within this context, this thesis has three main contributions. First, we developed DeepGeo, a toolbox that provides modern DL algorithms for Remote Sensing image classification and analysis. DeepGeo focuses on providing easy-to-use and extensible methods, making it easier to those analysts without strong programming skills to use those DL methods. It is distributed as free and open source package and is available at https://github.com/rvmaretto/deepgeo. Second, we present the PRODES-Vision collection of dataset, a collection of reference dataset of deforested areas, based on PRODES deforestation maps, to train Deep Neural Networks, as well as a methodology to the generation of reference datasets based on thematic maps. We believe that these datasets would encourage the development of new methods for automatically map Land Use and Land Cover changes. And finally, we propose a fully automatic mapping approach based on spatio-temporal convolutional neural networks aiming to reduce the effort of mapping deforested areas. Furthermore, we propose two spatio-temporal variations of the U-Net architecture, which make it possible to incorporate both spatial and temporal contexts. Using a real-world dataset, we show that our method outperforms a traditional UNet architecture, achieving approximately 95% accuracy. We also demonstrate that our preprocessing protocol reduces the impact of noise in the training dataset. To demonstrate the scalability of our method, it was applied to map deforestation over the entire Pará State, achieving approximately 94% overall accuracy. And finally, to demonstrate its applicability to another areas, it was applied to a region of the Brazilian Cerrado, achieving approximately 91% overall accuracy.
publishDate 2020
dc.date.issued.fl_str_mv 2020-03-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://urlib.net/sid.inpe.br/mtc-m21c/2020/06.09.11.59
url http://urlib.net/sid.inpe.br/mtc-m21c/2020/06.09.11.59
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.publisher.program.fl_str_mv Programa de Pós-Graduação do INPE em Computação Aplicada
dc.publisher.initials.fl_str_mv INPE
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do INPE
instname:Instituto Nacional de Pesquisas Espaciais (INPE)
instacron:INPE
reponame_str Biblioteca Digital de Teses e Dissertações do INPE
collection Biblioteca Digital de Teses e Dissertações do INPE
instname_str Instituto Nacional de Pesquisas Espaciais (INPE)
instacron_str INPE
institution INPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)
repository.mail.fl_str_mv
publisher_program_txtF_mv Programa de Pós-Graduação do INPE em Computação Aplicada
contributor_advisor1_txtF_mv Leila Maria Garcia Fonseca
_version_ 1706805044720959488