Triatomic molecules in two-dimensional layers

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Filipe Furlan Bellotti
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2056
Resumo: We found universal laws for the spectrum of two-dimensional three-body systems, composed by two identical particles and a distinct one (AAB). These universal laws appear when the potential range (r_0) is much smaller than the size of the system. In two dimensions this condition is formulated as (E2 is the two-body energy and ? is the reduced mass). The zero range model, which is very appropriated to establish the universal laws, is introduced through the ?-Dirac potential. We derive the corresponding two-dimensional Faddeev equations for the three-body system and solve them numerically in momentum space. Our results showed that the three-body binding energy monotonically increases with the two-body binding energy, and such dependence is more pronounced than the mass variations. We found that the three-body energy depends logarithmic on the two-body energy for large values. Furthermore, been m=mB/mA the ratio between the masses of the B and A particles, the three-body energy is mass-independent for m ? ? and increase without bounds for m ?0. The limit of two non-interacting identical particles is also studied in the AAB system. We found that the two-dimensional three-body system always support at least two bound states and more bound states appear for m<0.22. Finally, we analyze the particular limit of m ?0 using the adiabatic approximation. This approximation can be used to study the three-body system in two-dimensions with an accuracy better than 10% compared to the solutions of the Faddeev equations, for m ? 0.01.
id ITA_8e759f0eec4451529891d8170bda7d91
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2056
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Triatomic molecules in two-dimensional layersProblema de poucos corposProblema de três corposMoléculas triatômicasGasesBaixa temperaturaEnergiaFísica molecularFísica nuclearWe found universal laws for the spectrum of two-dimensional three-body systems, composed by two identical particles and a distinct one (AAB). These universal laws appear when the potential range (r_0) is much smaller than the size of the system. In two dimensions this condition is formulated as (E2 is the two-body energy and ? is the reduced mass). The zero range model, which is very appropriated to establish the universal laws, is introduced through the ?-Dirac potential. We derive the corresponding two-dimensional Faddeev equations for the three-body system and solve them numerically in momentum space. Our results showed that the three-body binding energy monotonically increases with the two-body binding energy, and such dependence is more pronounced than the mass variations. We found that the three-body energy depends logarithmic on the two-body energy for large values. Furthermore, been m=mB/mA the ratio between the masses of the B and A particles, the three-body energy is mass-independent for m ? ? and increase without bounds for m ?0. The limit of two non-interacting identical particles is also studied in the AAB system. We found that the two-dimensional three-body system always support at least two bound states and more bound states appear for m<0.22. Finally, we analyze the particular limit of m ?0 using the adiabatic approximation. This approximation can be used to study the three-body system in two-dimensions with an accuracy better than 10% compared to the solutions of the Faddeev equations, for m ? 0.01.Instituto Tecnológico de AeronáuticaTobias FredericoFilipe Furlan Bellotti2012-06-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2056reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:03:48Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2056http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:38:08.288Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Triatomic molecules in two-dimensional layers
title Triatomic molecules in two-dimensional layers
spellingShingle Triatomic molecules in two-dimensional layers
Filipe Furlan Bellotti
Problema de poucos corpos
Problema de três corpos
Moléculas triatômicas
Gases
Baixa temperatura
Energia
Física molecular
Física nuclear
title_short Triatomic molecules in two-dimensional layers
title_full Triatomic molecules in two-dimensional layers
title_fullStr Triatomic molecules in two-dimensional layers
title_full_unstemmed Triatomic molecules in two-dimensional layers
title_sort Triatomic molecules in two-dimensional layers
author Filipe Furlan Bellotti
author_facet Filipe Furlan Bellotti
author_role author
dc.contributor.none.fl_str_mv Tobias Frederico
dc.contributor.author.fl_str_mv Filipe Furlan Bellotti
dc.subject.por.fl_str_mv Problema de poucos corpos
Problema de três corpos
Moléculas triatômicas
Gases
Baixa temperatura
Energia
Física molecular
Física nuclear
topic Problema de poucos corpos
Problema de três corpos
Moléculas triatômicas
Gases
Baixa temperatura
Energia
Física molecular
Física nuclear
dc.description.none.fl_txt_mv We found universal laws for the spectrum of two-dimensional three-body systems, composed by two identical particles and a distinct one (AAB). These universal laws appear when the potential range (r_0) is much smaller than the size of the system. In two dimensions this condition is formulated as (E2 is the two-body energy and ? is the reduced mass). The zero range model, which is very appropriated to establish the universal laws, is introduced through the ?-Dirac potential. We derive the corresponding two-dimensional Faddeev equations for the three-body system and solve them numerically in momentum space. Our results showed that the three-body binding energy monotonically increases with the two-body binding energy, and such dependence is more pronounced than the mass variations. We found that the three-body energy depends logarithmic on the two-body energy for large values. Furthermore, been m=mB/mA the ratio between the masses of the B and A particles, the three-body energy is mass-independent for m ? ? and increase without bounds for m ?0. The limit of two non-interacting identical particles is also studied in the AAB system. We found that the two-dimensional three-body system always support at least two bound states and more bound states appear for m<0.22. Finally, we analyze the particular limit of m ?0 using the adiabatic approximation. This approximation can be used to study the three-body system in two-dimensions with an accuracy better than 10% compared to the solutions of the Faddeev equations, for m ? 0.01.
description We found universal laws for the spectrum of two-dimensional three-body systems, composed by two identical particles and a distinct one (AAB). These universal laws appear when the potential range (r_0) is much smaller than the size of the system. In two dimensions this condition is formulated as (E2 is the two-body energy and ? is the reduced mass). The zero range model, which is very appropriated to establish the universal laws, is introduced through the ?-Dirac potential. We derive the corresponding two-dimensional Faddeev equations for the three-body system and solve them numerically in momentum space. Our results showed that the three-body binding energy monotonically increases with the two-body binding energy, and such dependence is more pronounced than the mass variations. We found that the three-body energy depends logarithmic on the two-body energy for large values. Furthermore, been m=mB/mA the ratio between the masses of the B and A particles, the three-body energy is mass-independent for m ? ? and increase without bounds for m ?0. The limit of two non-interacting identical particles is also studied in the AAB system. We found that the two-dimensional three-body system always support at least two bound states and more bound states appear for m<0.22. Finally, we analyze the particular limit of m ?0 using the adiabatic approximation. This approximation can be used to study the three-body system in two-dimensions with an accuracy better than 10% compared to the solutions of the Faddeev equations, for m ? 0.01.
publishDate 2012
dc.date.none.fl_str_mv 2012-06-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2056
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2056
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Problema de poucos corpos
Problema de três corpos
Moléculas triatômicas
Gases
Baixa temperatura
Energia
Física molecular
Física nuclear
_version_ 1706804997519310848