Modelagem do impacto da adesão à terapia anti-retroviral na dinâmica populacional de variantes de HIV-1

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Carvalho, Chandra Mara lattes
Orientador(a): Codeço, Cláudia lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Programa de Pós-Graduação: Programa de Pós-Graduação em Modelagem Computacional
Departamento: Serviço de Análise e Apoio a Formação de Recursos Humanos
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://tede.lncc.br/handle/tede/90
Resumo: In Brazil, since 1996, the antiretroviral therapy - HAART, also known as ARV - has been gratuitously distributed and granted by law. Therefore, anyone who takes the therapy, can desenvolve resistance acording to the amount of adherence they had. Drug resistance is known to have mutations increases linearly with elevated adherence in viremic patients, and some might say that resistance was more common in the most adherent patients with dectable viremia. Likewise, mathematical models are used to adresss some questions regarding the ARV, as to focus the epidemiological consequences of HAART interaction with behavioural changes or interventions, and the likely course of drug resistance evolution within the individual and also between individuals. In this study, we designed a host-parasit HIV model, that put together the intra and inter-host viral dynamics to test the adherence impact and the ARV access on the amount of resistant virus presents in the population. The basic model, model I, describes the interaction between cells susceptible to infection, target cells (T), wild infected cells (Is) and resistant infected cells (Ir), wild virus (Vs) and resistent virus (Vr). The target cells are created at rate λ, die at rate d per cell, and are infected with rate Ks and Kr. Infected cells, die at rate constant δ per cell and produce virus at rate fs e and fr per cell. We set the model I with literature, from the two patients data experimentaly colected, the grafics gerated by Model-Builder program were similar to the literature. After this, equations from previous model, model I, were modified to analyse the effects of giving an antiretroviral drug. Reverse transcriptase (RT) inhibitors are used to block the ability of the virus to infect a cell, while protease inhibitors (IP) cause the liberation of non-infectious viral particles. Based on that, model II, describes the interaction between susceptible cells to infection (T), four types of infected cells - the double wild RT and IP inhibitors (Iss), the wild for RT and resistant for IP (Isr), the resistant for RT and wild for IP (Irs) and the double resistant one (Irr), and four types of free virus, Vss, Vsr, Vrs, Vrr, according to the previous denomination.The target cells also are created at rate λ, die at rate d per cell, and are infected with rate k. Infected cells, die at rate constant δ per cell and produce virus at rate fss, frs, fsr and frr per cell, and free virus are cleared at rate c per virion, where εrt and εip are the efficacies of RT and PI, regarding the antiretroviral treatment (ε= 1 being a perfect drug). Model III was designed to combine the efficacy parameters and the resistance and suscetible virus, and to fit the intra-host dinamic in the inter-host populacional model, created in python. The inter-host model was designed to demonstrate the virus behavior in a 200 suscetible persons fictional sexual network, in 100 days of infection. First of all one randomic person was inoculated with a mixed infection, with the model III intra-host, and after that this person transmited the HIV infection to the rest of population in the network. It's known that the simulation of viral dynamics in social networks tries to identify the resistant possibilities of virus spreading over the population. Therefore our inter-host model suggest that in a mixed infection, with wild and resistant type of HIV, wild type virus can win the competition in intermediate and low adhesion cenarios, but with high adhesion in a populacion, resistant and wild type virus can coexist even in ARV presence. Hence, with this epidemiological model, we can rearange the strategies and politics of the HAART use for a better result in prolonging the HIV-1 infected ones.
id LNCC_d32b614c174c98c75d408827049946c5
oai_identifier_str oai:tede-server.lncc.br:tede/90
network_acronym_str LNCC
network_name_str Biblioteca Digital de Teses e Dissertações do LNCC
repository_id_str
spelling Codeço, CláudiaCPF:01083907727http://lattes.cnpq.br/1929576902623348CPF:81393768504http://lattes.cnpq.br/3183177583039130Carvalho, Chandra Mara2015-03-04T18:51:02Z2008-07-222008-06-06CARVALHO, Chandra Mara. Modelling the HIV-1 drug resistance and adherence during HAART (Highly active antiretroviral therapy). 2008. 133 f. Dissertação (Mestrado em Modelagem computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2008.https://tede.lncc.br/handle/tede/90In Brazil, since 1996, the antiretroviral therapy - HAART, also known as ARV - has been gratuitously distributed and granted by law. Therefore, anyone who takes the therapy, can desenvolve resistance acording to the amount of adherence they had. Drug resistance is known to have mutations increases linearly with elevated adherence in viremic patients, and some might say that resistance was more common in the most adherent patients with dectable viremia. Likewise, mathematical models are used to adresss some questions regarding the ARV, as to focus the epidemiological consequences of HAART interaction with behavioural changes or interventions, and the likely course of drug resistance evolution within the individual and also between individuals. In this study, we designed a host-parasit HIV model, that put together the intra and inter-host viral dynamics to test the adherence impact and the ARV access on the amount of resistant virus presents in the population. The basic model, model I, describes the interaction between cells susceptible to infection, target cells (T), wild infected cells (Is) and resistant infected cells (Ir), wild virus (Vs) and resistent virus (Vr). The target cells are created at rate λ, die at rate d per cell, and are infected with rate Ks and Kr. Infected cells, die at rate constant δ per cell and produce virus at rate fs e and fr per cell. We set the model I with literature, from the two patients data experimentaly colected, the grafics gerated by Model-Builder program were similar to the literature. After this, equations from previous model, model I, were modified to analyse the effects of giving an antiretroviral drug. Reverse transcriptase (RT) inhibitors are used to block the ability of the virus to infect a cell, while protease inhibitors (IP) cause the liberation of non-infectious viral particles. Based on that, model II, describes the interaction between susceptible cells to infection (T), four types of infected cells - the double wild RT and IP inhibitors (Iss), the wild for RT and resistant for IP (Isr), the resistant for RT and wild for IP (Irs) and the double resistant one (Irr), and four types of free virus, Vss, Vsr, Vrs, Vrr, according to the previous denomination.The target cells also are created at rate λ, die at rate d per cell, and are infected with rate k. Infected cells, die at rate constant δ per cell and produce virus at rate fss, frs, fsr and frr per cell, and free virus are cleared at rate c per virion, where εrt and εip are the efficacies of RT and PI, regarding the antiretroviral treatment (ε= 1 being a perfect drug). Model III was designed to combine the efficacy parameters and the resistance and suscetible virus, and to fit the intra-host dinamic in the inter-host populacional model, created in python. The inter-host model was designed to demonstrate the virus behavior in a 200 suscetible persons fictional sexual network, in 100 days of infection. First of all one randomic person was inoculated with a mixed infection, with the model III intra-host, and after that this person transmited the HIV infection to the rest of population in the network. It's known that the simulation of viral dynamics in social networks tries to identify the resistant possibilities of virus spreading over the population. Therefore our inter-host model suggest that in a mixed infection, with wild and resistant type of HIV, wild type virus can win the competition in intermediate and low adhesion cenarios, but with high adhesion in a populacion, resistant and wild type virus can coexist even in ARV presence. Hence, with this epidemiological model, we can rearange the strategies and politics of the HAART use for a better result in prolonging the HIV-1 infected ones.Conhecido como vírus da imunodeficiencia humana, o HIV é o causador da AIDS, a sindrome de imunodeficiencia adquirida. O vírus, ao infectar o hospedeiro, ataca células T CD4 do sistema imune. Existem drogas da terapia anti-retroviral para o tratamento da AIDS, um regime complexo de drogas prontas para atacar o HIV em certos estágios do seu ciclo de vida. O HIV, em média, demora dez anos para passar de infecção primária para AIDS propriamente dita. Anteriormente, sabia-se que a taxa de replicação do HIV era muito baixa, mas juntamente com a terapia, percebeu-se que essa taxa poderia crescer rapidamente. A modelagem dessas taxas indicou que o vírus poderia se tornar resistente a qualquer droga, principalmente daquelas que precisavam de uma mutação para gerar resistência. Neste trabalho foram gerados três modelos intra - hospedeiro, que tentam retratar a dinâmica viral no interior de um indivíduo, abordando certas questões de interesse, tal como resistência, tratamento ARV e adesão ao tratamento, com EDOs, resolvidas através do Programa Model-Builder. O modelo I descreve a interação entre células T CD4 suscetíveis (T), células infectadas por vírus selvagem (Is), por células infectadas por vírus resistentes (Ir), vírus selvagens (Vs) e vírus resistentes (Vr). As células T CD4 são geradas a uma taxa λ, morrem a uma taxa d por célula, e são infectadas a uma taxa Ks e Kr. Células infectadas a constante δ e produzem vírus uma taxa fs e fr por célula. O modelo I foi testado através de dados da literatura de dois pacientes com dados experimentais coletados. Os gráficos gerados pelo programa Model-Builder foram similares aos da literatura.Inibidores de transcriptase reversa são usados para bloquear a habilidade do vírus de infectar a célula, enquanto que inibidores de protease provocam a liberação de partículas virais não infecciosas. Sendo assim, o modelo II descreve a interação entre as células T CD4 suscetíveis (T), quatro tipos de células infectadas, as duplamente sensíveis aos inibidores de RT e IP (Iss), as sensíveis a RT e resistentes a IP (Isr), as resistentes a RT e sensíveis a IP (Irs) e as duplamente resistentes (Irr), e os quatro tipos de vírus livres, que estão de acordo com a descrição anterior, Vss, Vsr, Vrs, Vrr. As células T CD4 são geradas a uma taxa λ e morrem a uma taxa d por célula e são infectadas a uma taxa k específica para cada tipo viral. Células infectadas morrem a uma taxa constante δ por célula e produzem novos vírus a taxas fss, frs, fsr e frr, respectivamente e novos vírus são liberados no sistema a uma taxa c por vírus, onde εrt e εip são as eficácias para IRT e IP, ao se abordar o tratamento ARV, no qual ε = 1 significa uma droga perfeita. Sabe-se que a simulação da dinâmica viral em redes sociais/sexuais tenta identificar quais as possibilidades de cepas virais resistentes serem transmitidas para a população. Assim, um modelo populaciona dinâmico, inter-hospedeiro foi desenvolvido para demonstrar como o vírus se espalha através das redes de contato da população através de uma redes sexual fictícia de 200 pessoas suscetíveis, com um tempo de 100 dias, no qual primariamente um indivíduo era inoculado com uma infecção mista, sendo rodado o modelo III no mesmo e depois, este indivíduo índice transmitia a infecção para o resto da rede. Os resultados desta dinâmica indicaram que em uma infecção mista, com tipos virais selvagens e resistentes, o tipo selvagem pode vencer a competição em cenários de baixa e intermidiária adesão, mas em cenários de alta adesão na população, o tipo resistente e o selvagem podem coexistir na presença de várias combinações de ARV. Logo, através deste modelo epidemiológico, novas propostas de políticas e estratégias para o uso da terapia ARV e revisão do uso da HAART podem ser propostas, com a finalidade de um melhor resultado, na presença de ambos os tipos de vírus, na sobrevida das pessoas que vivem com HIV/AIDS hoje, no mundoMade available in DSpace on 2015-03-04T18:51:02Z (GMT). No. of bitstreams: 1 thesis_final.pdf: 4015702 bytes, checksum: 1b7693d9609ca8f10eac248354ba512e (MD5) Previous issue date: 2008-06-06application/pdfhttp://tede-server.lncc.br:8080/retrieve/365/thesis_final.pdf.jpghttp://tede-server.lncc.br:8080/retrieve/591/thesis_final.pdf.jpgporLaboratório Nacional de Computação CientíficaPrograma de Pós-Graduação em Modelagem ComputacionalLNCCBRServiço de Análise e Apoio a Formação de Recursos HumanosHIV (Vírus) -- Modelos matemáticosHIV (Vírus) -- PrevençãoEpidemiologia matemáticaCNPQ::CIENCIAS BIOLOGICAS::MICROBIOLOGIA::BIOLOGIA E FISIOLOGIA DOS MICROORGANISMOS::VIROLOGIAModelagem do impacto da adesão à terapia anti-retroviral na dinâmica populacional de variantes de HIV-1Modelling the HIV-1 drug resistance and adherence during HAART (Highly active antiretroviral therapy)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCCORIGINALthesis_final.pdfapplication/pdf4015702http://tede-server.lncc.br:8080/tede/bitstream/tede/90/1/thesis_final.pdf1b7693d9609ca8f10eac248354ba512eMD51THUMBNAILthesis_final.pdf.jpgthesis_final.pdf.jpgimage/jpeg3154http://tede-server.lncc.br:8080/tede/bitstream/tede/90/2/thesis_final.pdf.jpgb5662dea9b9337ddc7af05615bba59ceMD52tede/902018-07-04 09:59:38.7oai:tede-server.lncc.br:tede/90Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2018-07-04T12:59:38Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false
dc.title.por.fl_str_mv Modelagem do impacto da adesão à terapia anti-retroviral na dinâmica populacional de variantes de HIV-1
dc.title.alternative.eng.fl_str_mv Modelling the HIV-1 drug resistance and adherence during HAART (Highly active antiretroviral therapy)
title Modelagem do impacto da adesão à terapia anti-retroviral na dinâmica populacional de variantes de HIV-1
spellingShingle Modelagem do impacto da adesão à terapia anti-retroviral na dinâmica populacional de variantes de HIV-1
Carvalho, Chandra Mara
HIV (Vírus) -- Modelos matemáticos
HIV (Vírus) -- Prevenção
Epidemiologia matemática
CNPQ::CIENCIAS BIOLOGICAS::MICROBIOLOGIA::BIOLOGIA E FISIOLOGIA DOS MICROORGANISMOS::VIROLOGIA
title_short Modelagem do impacto da adesão à terapia anti-retroviral na dinâmica populacional de variantes de HIV-1
title_full Modelagem do impacto da adesão à terapia anti-retroviral na dinâmica populacional de variantes de HIV-1
title_fullStr Modelagem do impacto da adesão à terapia anti-retroviral na dinâmica populacional de variantes de HIV-1
title_full_unstemmed Modelagem do impacto da adesão à terapia anti-retroviral na dinâmica populacional de variantes de HIV-1
title_sort Modelagem do impacto da adesão à terapia anti-retroviral na dinâmica populacional de variantes de HIV-1
author Carvalho, Chandra Mara
author_facet Carvalho, Chandra Mara
author_role author
dc.contributor.advisor1.fl_str_mv Codeço, Cláudia
dc.contributor.advisor1ID.fl_str_mv CPF:01083907727
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1929576902623348
dc.contributor.authorID.fl_str_mv CPF:81393768504
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3183177583039130
dc.contributor.author.fl_str_mv Carvalho, Chandra Mara
contributor_str_mv Codeço, Cláudia
dc.subject.por.fl_str_mv HIV (Vírus) -- Modelos matemáticos
HIV (Vírus) -- Prevenção
Epidemiologia matemática
topic HIV (Vírus) -- Modelos matemáticos
HIV (Vírus) -- Prevenção
Epidemiologia matemática
CNPQ::CIENCIAS BIOLOGICAS::MICROBIOLOGIA::BIOLOGIA E FISIOLOGIA DOS MICROORGANISMOS::VIROLOGIA
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS BIOLOGICAS::MICROBIOLOGIA::BIOLOGIA E FISIOLOGIA DOS MICROORGANISMOS::VIROLOGIA
description In Brazil, since 1996, the antiretroviral therapy - HAART, also known as ARV - has been gratuitously distributed and granted by law. Therefore, anyone who takes the therapy, can desenvolve resistance acording to the amount of adherence they had. Drug resistance is known to have mutations increases linearly with elevated adherence in viremic patients, and some might say that resistance was more common in the most adherent patients with dectable viremia. Likewise, mathematical models are used to adresss some questions regarding the ARV, as to focus the epidemiological consequences of HAART interaction with behavioural changes or interventions, and the likely course of drug resistance evolution within the individual and also between individuals. In this study, we designed a host-parasit HIV model, that put together the intra and inter-host viral dynamics to test the adherence impact and the ARV access on the amount of resistant virus presents in the population. The basic model, model I, describes the interaction between cells susceptible to infection, target cells (T), wild infected cells (Is) and resistant infected cells (Ir), wild virus (Vs) and resistent virus (Vr). The target cells are created at rate λ, die at rate d per cell, and are infected with rate Ks and Kr. Infected cells, die at rate constant δ per cell and produce virus at rate fs e and fr per cell. We set the model I with literature, from the two patients data experimentaly colected, the grafics gerated by Model-Builder program were similar to the literature. After this, equations from previous model, model I, were modified to analyse the effects of giving an antiretroviral drug. Reverse transcriptase (RT) inhibitors are used to block the ability of the virus to infect a cell, while protease inhibitors (IP) cause the liberation of non-infectious viral particles. Based on that, model II, describes the interaction between susceptible cells to infection (T), four types of infected cells - the double wild RT and IP inhibitors (Iss), the wild for RT and resistant for IP (Isr), the resistant for RT and wild for IP (Irs) and the double resistant one (Irr), and four types of free virus, Vss, Vsr, Vrs, Vrr, according to the previous denomination.The target cells also are created at rate λ, die at rate d per cell, and are infected with rate k. Infected cells, die at rate constant δ per cell and produce virus at rate fss, frs, fsr and frr per cell, and free virus are cleared at rate c per virion, where εrt and εip are the efficacies of RT and PI, regarding the antiretroviral treatment (ε= 1 being a perfect drug). Model III was designed to combine the efficacy parameters and the resistance and suscetible virus, and to fit the intra-host dinamic in the inter-host populacional model, created in python. The inter-host model was designed to demonstrate the virus behavior in a 200 suscetible persons fictional sexual network, in 100 days of infection. First of all one randomic person was inoculated with a mixed infection, with the model III intra-host, and after that this person transmited the HIV infection to the rest of population in the network. It's known that the simulation of viral dynamics in social networks tries to identify the resistant possibilities of virus spreading over the population. Therefore our inter-host model suggest that in a mixed infection, with wild and resistant type of HIV, wild type virus can win the competition in intermediate and low adhesion cenarios, but with high adhesion in a populacion, resistant and wild type virus can coexist even in ARV presence. Hence, with this epidemiological model, we can rearange the strategies and politics of the HAART use for a better result in prolonging the HIV-1 infected ones.
publishDate 2008
dc.date.available.fl_str_mv 2008-07-22
dc.date.issued.fl_str_mv 2008-06-06
dc.date.accessioned.fl_str_mv 2015-03-04T18:51:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARVALHO, Chandra Mara. Modelling the HIV-1 drug resistance and adherence during HAART (Highly active antiretroviral therapy). 2008. 133 f. Dissertação (Mestrado em Modelagem computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2008.
dc.identifier.uri.fl_str_mv https://tede.lncc.br/handle/tede/90
identifier_str_mv CARVALHO, Chandra Mara. Modelling the HIV-1 drug resistance and adherence during HAART (Highly active antiretroviral therapy). 2008. 133 f. Dissertação (Mestrado em Modelagem computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2008.
url https://tede.lncc.br/handle/tede/90
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Modelagem Computacional
dc.publisher.initials.fl_str_mv LNCC
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Serviço de Análise e Apoio a Formação de Recursos Humanos
publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do LNCC
instname:Laboratório Nacional de Computação Científica (LNCC)
instacron:LNCC
instname_str Laboratório Nacional de Computação Científica (LNCC)
instacron_str LNCC
institution LNCC
reponame_str Biblioteca Digital de Teses e Dissertações do LNCC
collection Biblioteca Digital de Teses e Dissertações do LNCC
bitstream.url.fl_str_mv http://tede-server.lncc.br:8080/tede/bitstream/tede/90/1/thesis_final.pdf
http://tede-server.lncc.br:8080/tede/bitstream/tede/90/2/thesis_final.pdf.jpg
bitstream.checksum.fl_str_mv 1b7693d9609ca8f10eac248354ba512e
b5662dea9b9337ddc7af05615bba59ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)
repository.mail.fl_str_mv library@lncc.br||library@lncc.br
_version_ 1790266128647323648