Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Dauda, Suleiman
Orientador(a): Lombardi, Ana Teresa lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ecologia e Recursos Naturais - PPGERN
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/15903
Resumo: Microalgae require copper (Cu) in trace levels for their growth and metabolism. It is a vital component of certain metalloproteins, participates in the photosynthetic process, and catalyzes various redox reactions. Although this element has been widely studied concerning microalgae physiology, the effects of environmentally relevant levels have been less investigated. The aim of this study was to see the effect of environmental copper concentrations on some aspects of algae physiology, as growth rates, biomolecules (carbohydrates, lipids, proteins, and pigments) production, antioxidant response, and photosynthesis. For this, Ankistrodesmus flexuosus, Curvastrum pantanale, Monoraphidium sp., and Chlamydomonas chlorastera were the test organisms. They were kept under laboratory controlled conditions with Cu concentrations ranging from low (0.1 nM) to high (5480.0 nM) free Cu ions (Cu2+). Cultures lasted 96 h and all analyses were done in exponential growth phase. Cell densities and growth rates were unaffected in low Cu concentrations up to, 9.1 nM Cu2+ in C. chlorastera and 7.4 nM Cu2+ in the other species. In relation to pigments, β-carotene and lutein increased in C. chlorastera (1.2 mg g-1 β-carotene; 6.14 mg g-1 lutein) in 0.3–0.4 nM Cu2+. C. chlorastera had the highest, carbohydrates (> 50 pg cell-1) across all Cu concentrations tested, proteins content (270.2 pg cell-1; 0.3 nM Cu2+), and lipids (61.9% dw; 1.2 nM Cu2+). The activities of α, α-diphenyl-β-picrylhydrazyl (DPPH) radical, Glutathione S-transferase (GST), peroxidase (POD), superoxide dismutase (SOD) and malondialdehyde (MDA) content were not affected by low Cu exposure, but increased in high Cu. The microalgae effective quantum yields (ΔF⁄F_m') were more sensitive to Cu than their maximum quantum yields (F_v⁄F_m ). In Monoraphdium sp., Cu increase (3.4–7.4 nM Cu2+) increased photosynthesis, as recorded in the effective quantum yield (ΔF⁄F_m'), relative maximum electron transport rate (rETRm), saturation irradiance (Ek), and photochemical quenching (qP and qL). The non-photochemical quenching (NPQ) and PSII antenna size of Monoraphidium sp. increased in high Cu. Monoraphidium sp. also had the lowest photoinhibition (β) under high irradiance across all Cu exposures. The primary productivity of Monoraphidium sp. was unaltered in low Cu (1.7–21.4 nM Cu2+), but reduced by high Cu (589.0 nM Cu2+). Cu-elicited hormetic responses were seen in lipids content in C. chlorastera, and in photosynthesis in Monoraphidium sp. These findings show that depending on the species and concentration, Cu can stimulate biomolecules accumulation and increase photosynthesis in microalgae, without reducing growth.
id SCAR_0e1eea6fe3aabca608e134ddf531a9d9
oai_identifier_str oai:repositorio.ufscar.br:ufscar/15903
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Dauda, SuleimanLombardi, Ana Teresahttp://lattes.cnpq.br/6737850858443813http://lattes.cnpq.br/80634714057930122022-04-25T14:02:37Z2022-04-25T14:02:37Z2022-02-28DAUDA, Suleiman. Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis. 2022. Tese (Doutorado em Ecologia e Recursos Naturais) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15903.https://repositorio.ufscar.br/handle/ufscar/15903Microalgae require copper (Cu) in trace levels for their growth and metabolism. It is a vital component of certain metalloproteins, participates in the photosynthetic process, and catalyzes various redox reactions. Although this element has been widely studied concerning microalgae physiology, the effects of environmentally relevant levels have been less investigated. The aim of this study was to see the effect of environmental copper concentrations on some aspects of algae physiology, as growth rates, biomolecules (carbohydrates, lipids, proteins, and pigments) production, antioxidant response, and photosynthesis. For this, Ankistrodesmus flexuosus, Curvastrum pantanale, Monoraphidium sp., and Chlamydomonas chlorastera were the test organisms. They were kept under laboratory controlled conditions with Cu concentrations ranging from low (0.1 nM) to high (5480.0 nM) free Cu ions (Cu2+). Cultures lasted 96 h and all analyses were done in exponential growth phase. Cell densities and growth rates were unaffected in low Cu concentrations up to, 9.1 nM Cu2+ in C. chlorastera and 7.4 nM Cu2+ in the other species. In relation to pigments, β-carotene and lutein increased in C. chlorastera (1.2 mg g-1 β-carotene; 6.14 mg g-1 lutein) in 0.3–0.4 nM Cu2+. C. chlorastera had the highest, carbohydrates (> 50 pg cell-1) across all Cu concentrations tested, proteins content (270.2 pg cell-1; 0.3 nM Cu2+), and lipids (61.9% dw; 1.2 nM Cu2+). The activities of α, α-diphenyl-β-picrylhydrazyl (DPPH) radical, Glutathione S-transferase (GST), peroxidase (POD), superoxide dismutase (SOD) and malondialdehyde (MDA) content were not affected by low Cu exposure, but increased in high Cu. The microalgae effective quantum yields (ΔF⁄F_m') were more sensitive to Cu than their maximum quantum yields (F_v⁄F_m ). In Monoraphdium sp., Cu increase (3.4–7.4 nM Cu2+) increased photosynthesis, as recorded in the effective quantum yield (ΔF⁄F_m'), relative maximum electron transport rate (rETRm), saturation irradiance (Ek), and photochemical quenching (qP and qL). The non-photochemical quenching (NPQ) and PSII antenna size of Monoraphidium sp. increased in high Cu. Monoraphidium sp. also had the lowest photoinhibition (β) under high irradiance across all Cu exposures. The primary productivity of Monoraphidium sp. was unaltered in low Cu (1.7–21.4 nM Cu2+), but reduced by high Cu (589.0 nM Cu2+). Cu-elicited hormetic responses were seen in lipids content in C. chlorastera, and in photosynthesis in Monoraphidium sp. These findings show that depending on the species and concentration, Cu can stimulate biomolecules accumulation and increase photosynthesis in microalgae, without reducing growth.As microalgas requerem cobre (Cu) em níveis traço para seu crescimento e metabolismo. É um componente vital para certas metaloproteínas, participa do processo fotossintético e catalisa várias reações redox. Embora este elemento tenha sido amplamente estudado na fisiologia de microalgas, os efeitos de níveis ambientalmente relevantes foram ainda pouco investigados. O objetivo deste estudo foi verificar o efeito das concentrações ambientais de cobre em alguns aspectos da fisiologia de microalgas, como taxas de crescimento, produção de biomoléculas (carboidratos, lipídios, proteínas e pigmentos), resposta antioxidante e fotossíntese. Para isso, Ankistrodesmus flexuosus, Curvastrum pantanale, Chlamydomonas chlorastera e Monoraphidium sp. foram os organismos-teste. Eles foram mantidos sob condições controladas em laboratório com concentrações de cobre livre (Cu2+) variando de baixa (~0,1 nM) a alta (5480,0 nM). As culturas foram mantidas por 96 horas e todas as análises foram feitas na fase de crescimento exponencial. As densidades de celulares e as taxas de crescimento não foram afetadas em baixas concentrações de Cu até 9,1 nM Cu2+ em C. chlorastera, e 7,4 nM Cu2+ nas outras espécies. Em relação aos pigmentos, β-caroteno e luteína aumentaram em C. chlorastera (1,2 mg g-1 β-caroteno; 6,14 mg g-1 luteína) em 0,3–0,4 nM Cu2+. C. chlorastera apresentou os maiores, carboidratos (> 50 pg célula-1) em todas as concentrações de Cu testadas, teor de proteínas (270,2 pg célula-1; 0,3 nM Cu2+) e lipídios (61,9% dw; 1,2 nM Cu2+). As atividades do α, α-difenil-β-picrilhidrazil (DPPH), Glutationa S-transferase (GST), peroxidase (POD), superóxido dismutase (SOD), e teor de malondialdeído (MDA) não foram afetadas pela baixa exposição ao Cu, mas aumentou em alto Cu. Os rendimentos quânticos efetivos das microalgas (ΔF⁄F_m') foi mais sensíveis ao Cu do que o rendimentos quânticos máximos (F_v⁄F_m ). Em Monoraphdium sp., o aumento de Cu (3,4–7,4 nM Cu2+) aumentou a fotossíntese, conforme registrado no rendimento quântico efetivo (ΔF⁄F_m'), taxa de transporte de elétrons máxima relativa (rETRm), irradiância de saturação (Ek) e extinção fotoquímica (qP e qL). A extinção não fotoquímica (NPQ) e o tamanho da antena PSII de Monoraphidium sp. aumentou em alto Cu. Monoraphidium sp. também teve a menor fotoinibição (β) sob alta irradiância em todas as exposições de Cu. A produtividade primária de Monoraphidium sp. foi inalterado em baixo Cu (1,7-21,4 nM Cu2+), mas reduziu em alto Cu (589,0 nM Cu2+). Respostas horméticas induzidas por Cu foram observadas no conteúdo de lipídios em C. chlorastera e na fotossíntese em Monoraphidium sp. Esses resultados mostram que dependendo da espécie e concentração, o Cu pode estimular o acúmulo de biomoléculas e aumentar a fotossíntese em microalgas, sem reduzir o crescimento.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Processo nº 121853/2017-9, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ecologia e Recursos Naturais - PPGERNUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessProdução de biomassaFisiologia de microalgasAntioxidantesFotossínteseBiomass productionMicroalgal physiologyAntioxidantsPhotosynthesisCIENCIAS BIOLOGICAS::ECOLOGIACIENCIAS BIOLOGICASPhysiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesisRespostas fisiológicas de microalgas chlorophyta sob concentrações ambientalmente relevantes de cobre: biomoléculas, estresse oxidativo e fotossínteseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese_Suleiman_versao_final_28_04_2022.pdfTese_Suleiman_versao_final_28_04_2022.pdfTeseapplication/pdf3850001https://repositorio.ufscar.br/bitstream/ufscar/15903/9/Tese_Suleiman_versao_final_28_04_2022.pdf48352b0a1799fbee506d7b74e5d00c06MD59Formulário_Comprovante Versão Final Tese (1).pdfFormulário_Comprovante Versão Final Tese (1).pdfComprovante de submissão de versão finalapplication/pdf167457https://repositorio.ufscar.br/bitstream/ufscar/15903/3/Formul%c3%a1rio_Comprovante%20Vers%c3%a3o%20Final%20Tese%20%281%29.pdf183791607ee525a3b0434fd321cedf44MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/15903/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTTese_Suleiman_versao_final_28_04_2022.pdf.txtTese_Suleiman_versao_final_28_04_2022.pdf.txtExtracted texttext/plain182632https://repositorio.ufscar.br/bitstream/ufscar/15903/10/Tese_Suleiman_versao_final_28_04_2022.pdf.txt44da81be5c7e1a083fed0eeb7757a79dMD510Formulário_Comprovante Versão Final Tese (1).pdf.txtFormulário_Comprovante Versão Final Tese (1).pdf.txtExtracted texttext/plain1574https://repositorio.ufscar.br/bitstream/ufscar/15903/7/Formul%c3%a1rio_Comprovante%20Vers%c3%a3o%20Final%20Tese%20%281%29.pdf.txt4eb35d892908771acf021e5c4c907729MD57THUMBNAILTese_Suleiman_versao_final_28_04_2022.pdf.jpgTese_Suleiman_versao_final_28_04_2022.pdf.jpgIM Thumbnailimage/jpeg7429https://repositorio.ufscar.br/bitstream/ufscar/15903/11/Tese_Suleiman_versao_final_28_04_2022.pdf.jpgb4a12e6ca07b499c1f5996bf61588806MD511Formulário_Comprovante Versão Final Tese (1).pdf.jpgFormulário_Comprovante Versão Final Tese (1).pdf.jpgIM Thumbnailimage/jpeg14341https://repositorio.ufscar.br/bitstream/ufscar/15903/8/Formul%c3%a1rio_Comprovante%20Vers%c3%a3o%20Final%20Tese%20%281%29.pdf.jpg333a6e4a66a2dc730499efbc8f8af558MD58ufscar/159032022-05-11 13:15:52.322oai:repositorio.ufscar.br:ufscar/15903Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T13:03:24.279259Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis
dc.title.alternative.por.fl_str_mv Respostas fisiológicas de microalgas chlorophyta sob concentrações ambientalmente relevantes de cobre: biomoléculas, estresse oxidativo e fotossíntese
title Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis
spellingShingle Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis
Dauda, Suleiman
Produção de biomassa
Fisiologia de microalgas
Antioxidantes
Fotossíntese
Biomass production
Microalgal physiology
Antioxidants
Photosynthesis
CIENCIAS BIOLOGICAS::ECOLOGIA
CIENCIAS BIOLOGICAS
title_short Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis
title_full Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis
title_fullStr Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis
title_full_unstemmed Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis
title_sort Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis
author Dauda, Suleiman
author_facet Dauda, Suleiman
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/8063471405793012
dc.contributor.author.fl_str_mv Dauda, Suleiman
dc.contributor.advisor1.fl_str_mv Lombardi, Ana Teresa
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6737850858443813
contributor_str_mv Lombardi, Ana Teresa
dc.subject.por.fl_str_mv Produção de biomassa
Fisiologia de microalgas
Antioxidantes
Fotossíntese
Biomass production
Microalgal physiology
Antioxidants
Photosynthesis
topic Produção de biomassa
Fisiologia de microalgas
Antioxidantes
Fotossíntese
Biomass production
Microalgal physiology
Antioxidants
Photosynthesis
CIENCIAS BIOLOGICAS::ECOLOGIA
CIENCIAS BIOLOGICAS
dc.subject.cnpq.fl_str_mv CIENCIAS BIOLOGICAS::ECOLOGIA
CIENCIAS BIOLOGICAS
description Microalgae require copper (Cu) in trace levels for their growth and metabolism. It is a vital component of certain metalloproteins, participates in the photosynthetic process, and catalyzes various redox reactions. Although this element has been widely studied concerning microalgae physiology, the effects of environmentally relevant levels have been less investigated. The aim of this study was to see the effect of environmental copper concentrations on some aspects of algae physiology, as growth rates, biomolecules (carbohydrates, lipids, proteins, and pigments) production, antioxidant response, and photosynthesis. For this, Ankistrodesmus flexuosus, Curvastrum pantanale, Monoraphidium sp., and Chlamydomonas chlorastera were the test organisms. They were kept under laboratory controlled conditions with Cu concentrations ranging from low (0.1 nM) to high (5480.0 nM) free Cu ions (Cu2+). Cultures lasted 96 h and all analyses were done in exponential growth phase. Cell densities and growth rates were unaffected in low Cu concentrations up to, 9.1 nM Cu2+ in C. chlorastera and 7.4 nM Cu2+ in the other species. In relation to pigments, β-carotene and lutein increased in C. chlorastera (1.2 mg g-1 β-carotene; 6.14 mg g-1 lutein) in 0.3–0.4 nM Cu2+. C. chlorastera had the highest, carbohydrates (> 50 pg cell-1) across all Cu concentrations tested, proteins content (270.2 pg cell-1; 0.3 nM Cu2+), and lipids (61.9% dw; 1.2 nM Cu2+). The activities of α, α-diphenyl-β-picrylhydrazyl (DPPH) radical, Glutathione S-transferase (GST), peroxidase (POD), superoxide dismutase (SOD) and malondialdehyde (MDA) content were not affected by low Cu exposure, but increased in high Cu. The microalgae effective quantum yields (ΔF⁄F_m') were more sensitive to Cu than their maximum quantum yields (F_v⁄F_m ). In Monoraphdium sp., Cu increase (3.4–7.4 nM Cu2+) increased photosynthesis, as recorded in the effective quantum yield (ΔF⁄F_m'), relative maximum electron transport rate (rETRm), saturation irradiance (Ek), and photochemical quenching (qP and qL). The non-photochemical quenching (NPQ) and PSII antenna size of Monoraphidium sp. increased in high Cu. Monoraphidium sp. also had the lowest photoinhibition (β) under high irradiance across all Cu exposures. The primary productivity of Monoraphidium sp. was unaltered in low Cu (1.7–21.4 nM Cu2+), but reduced by high Cu (589.0 nM Cu2+). Cu-elicited hormetic responses were seen in lipids content in C. chlorastera, and in photosynthesis in Monoraphidium sp. These findings show that depending on the species and concentration, Cu can stimulate biomolecules accumulation and increase photosynthesis in microalgae, without reducing growth.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-04-25T14:02:37Z
dc.date.available.fl_str_mv 2022-04-25T14:02:37Z
dc.date.issued.fl_str_mv 2022-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DAUDA, Suleiman. Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis. 2022. Tese (Doutorado em Ecologia e Recursos Naturais) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15903.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/15903
identifier_str_mv DAUDA, Suleiman. Physiological responses of chlorophyta microalgae under environmentally relevant copper concentrations: biomolecules, oxidative stress and photosynthesis. 2022. Tese (Doutorado em Ecologia e Recursos Naturais) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15903.
url https://repositorio.ufscar.br/handle/ufscar/15903
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ecologia e Recursos Naturais - PPGERN
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/15903/9/Tese_Suleiman_versao_final_28_04_2022.pdf
https://repositorio.ufscar.br/bitstream/ufscar/15903/3/Formul%c3%a1rio_Comprovante%20Vers%c3%a3o%20Final%20Tese%20%281%29.pdf
https://repositorio.ufscar.br/bitstream/ufscar/15903/4/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/15903/10/Tese_Suleiman_versao_final_28_04_2022.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/15903/7/Formul%c3%a1rio_Comprovante%20Vers%c3%a3o%20Final%20Tese%20%281%29.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/15903/11/Tese_Suleiman_versao_final_28_04_2022.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/15903/8/Formul%c3%a1rio_Comprovante%20Vers%c3%a3o%20Final%20Tese%20%281%29.pdf.jpg
bitstream.checksum.fl_str_mv 48352b0a1799fbee506d7b74e5d00c06
183791607ee525a3b0434fd321cedf44
e39d27027a6cc9cb039ad269a5db8e34
44da81be5c7e1a083fed0eeb7757a79d
4eb35d892908771acf021e5c4c907729
b4a12e6ca07b499c1f5996bf61588806
333a6e4a66a2dc730499efbc8f8af558
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351179035017216