Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Mafra, Agnes Cristina Oliveira
Orientador(a): Tardioli, Paulo Waldir lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química - PPGEQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/9469
Resumo: Sugarcane sugar (sucrose) is a raw material produced in abundance in Brazil; it is very attractive to produce high added-value products. Gluconic acid (GA) can be obtained by multienzymatic conversion of sucrose, using three enzymes. Firstly, invertase (INV), responsible for the inversion of sucrose into glucose and fructose, next glucose oxidase (GOD) for the glucose oxidation and the last enzyme is catalase (CAT) used for the decomposition of hydrogen peroxide (H2O2, by-product from glucose oxidation). In this study, the sucrose was inverted in a fed-batch process catalyzed by INV immobilized as cross-linked enzyme aggregate (CLEA). The GA was produced by glucose oxidation catalyzed by combinate CLEAs (Combi-CLEAs) of CAT from bovine liver and GOD from Aspergillus niger in a batch pneumatic reactor. CAT has a tetrameric structure which complicates its stabilization through conventional immobilization technique. CLEAs of CAT were prepared, evaluating the effect of precipitant and cross-linking agents, as well as bovine serum albumin (BSA) as feeder protein on the catalytic properties, thermal stability, and mass transport resistance of the derivatives. The most active derivatives were prepared using ammonium sulfate as precipitant agent, 50 mM glutaraldehyde as cross-linker, and BSA/CAT mass ratio of 3.0. These derivatives were almost completely active (yield of immobilization up to 100%) and highly stable at 40 oC and pH 7.0 (~ 80% of the initial activity was recovery after 200 h under these conditions). The co-precipitation of BSA together with CAT reduced the size of clusters suggesting a decrease of diffusive effects within the biocatalyst. Empirical kinetic model was fitted to the experimental data of initial rate vs. substrate concentration and used to make a comparative analysis of mass transfer into derivatives with and without BSA. Results suggested that the main effect that differentiates the free enzyme and the two derivatives analyzed was of diffusive nature. In fact, the effectiveness factor of the crosslinked aggregates of catalase with BSA increased approximately 4 times. The statistical experimental design and the analysis of the response surface methodology showed that the immobilization did not alter the conditions of maximum activity of the CAT, which were found to be 30 oC and pH  7.0 for all biocatalysts. Secondly, INV was immobilized by CLEA methodology using soy protein as feeder molecules as an alternative to the commonly used expensive BSA. The immobilized INV retained around 30% of the initial activity after enzyme leaching assay. The immobilized INV was recycled tenfold in 4 h-batches of hydrolysis of sucrose at 40 oC and pH 6.0, maintaining the reaction conversion above 75 %. The hydrolysis of sucrose catalyzed by immobilized INV showed to be economically feasible in an operational window built based on economic metrics for a fed-batch process with three intermittent sucrose feeds to restore the substrate concentration at 100 g.L-1 when the conversion reaches 95 %. This work represents an advance in the field, because using a carrier-free and recyclable biocatalyst the specific productivity (gram of products per gram of biocatalyst per hour) of inverted sugar syrup was as high as those previously reported for INV immobilized on solid carriers that may dilute its volumetric activity and increase the cost of the biocatalyst. Combi-CLEAs of CAT and GOD were prepared, evaluating the influence of precipitant and cross-linking agents, as well as BSA as feeder protein on enzyme immobilization yield and thermal stability of each enzyme. Combi-CLEAs were prepared using dimethoxyethane as precipitant, 25 mM glutaraldehyde and mass ratio BSA/enzymes of 5.45 (w/w) were selected, their activities and stabilities at 40 oC, pH 6 and 250 rpm for five hours were evaluated. The selected Combi-CLEAs were used in GA production in a pneumatic reactor with 26 g.L-1 glucose at 40 oC, pH 6 and 10 vvm. Results showed conversion of 100 % and kinetic profile very similar to the free enzymes process. The reusability of Combi-CLEAs was also studied in ten batch-cycles of 5 hours. Operational half-life was calculated from kinetic profiles and first order inactivation model and presented a value of 31.50 hours. Combi-CLEAs of GOD and CAT showed to be relevant robust biocatalyst for GA application and production of glucose.
id SCAR_3a832c2947126bddd3ee0c813a8c0739
oai_identifier_str oai:repositorio.ufscar.br:ufscar/9469
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Mafra, Agnes Cristina OliveiraTardioli, Paulo Waldirhttp://lattes.cnpq.br/0808991927126468Ribeiro, Marcelo Perencin de Arrudahttp://lattes.cnpq.br/0381402687491195http://lattes.cnpq.br/68684237023393802018-02-21T16:49:58Z2018-02-21T16:49:58Z2017-02-17MAFRA, Agnes Cristina Oliveira. Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose. 2017. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9469.https://repositorio.ufscar.br/handle/ufscar/9469Sugarcane sugar (sucrose) is a raw material produced in abundance in Brazil; it is very attractive to produce high added-value products. Gluconic acid (GA) can be obtained by multienzymatic conversion of sucrose, using three enzymes. Firstly, invertase (INV), responsible for the inversion of sucrose into glucose and fructose, next glucose oxidase (GOD) for the glucose oxidation and the last enzyme is catalase (CAT) used for the decomposition of hydrogen peroxide (H2O2, by-product from glucose oxidation). In this study, the sucrose was inverted in a fed-batch process catalyzed by INV immobilized as cross-linked enzyme aggregate (CLEA). The GA was produced by glucose oxidation catalyzed by combinate CLEAs (Combi-CLEAs) of CAT from bovine liver and GOD from Aspergillus niger in a batch pneumatic reactor. CAT has a tetrameric structure which complicates its stabilization through conventional immobilization technique. CLEAs of CAT were prepared, evaluating the effect of precipitant and cross-linking agents, as well as bovine serum albumin (BSA) as feeder protein on the catalytic properties, thermal stability, and mass transport resistance of the derivatives. The most active derivatives were prepared using ammonium sulfate as precipitant agent, 50 mM glutaraldehyde as cross-linker, and BSA/CAT mass ratio of 3.0. These derivatives were almost completely active (yield of immobilization up to 100%) and highly stable at 40 oC and pH 7.0 (~ 80% of the initial activity was recovery after 200 h under these conditions). The co-precipitation of BSA together with CAT reduced the size of clusters suggesting a decrease of diffusive effects within the biocatalyst. Empirical kinetic model was fitted to the experimental data of initial rate vs. substrate concentration and used to make a comparative analysis of mass transfer into derivatives with and without BSA. Results suggested that the main effect that differentiates the free enzyme and the two derivatives analyzed was of diffusive nature. In fact, the effectiveness factor of the crosslinked aggregates of catalase with BSA increased approximately 4 times. The statistical experimental design and the analysis of the response surface methodology showed that the immobilization did not alter the conditions of maximum activity of the CAT, which were found to be 30 oC and pH  7.0 for all biocatalysts. Secondly, INV was immobilized by CLEA methodology using soy protein as feeder molecules as an alternative to the commonly used expensive BSA. The immobilized INV retained around 30% of the initial activity after enzyme leaching assay. The immobilized INV was recycled tenfold in 4 h-batches of hydrolysis of sucrose at 40 oC and pH 6.0, maintaining the reaction conversion above 75 %. The hydrolysis of sucrose catalyzed by immobilized INV showed to be economically feasible in an operational window built based on economic metrics for a fed-batch process with three intermittent sucrose feeds to restore the substrate concentration at 100 g.L-1 when the conversion reaches 95 %. This work represents an advance in the field, because using a carrier-free and recyclable biocatalyst the specific productivity (gram of products per gram of biocatalyst per hour) of inverted sugar syrup was as high as those previously reported for INV immobilized on solid carriers that may dilute its volumetric activity and increase the cost of the biocatalyst. Combi-CLEAs of CAT and GOD were prepared, evaluating the influence of precipitant and cross-linking agents, as well as BSA as feeder protein on enzyme immobilization yield and thermal stability of each enzyme. Combi-CLEAs were prepared using dimethoxyethane as precipitant, 25 mM glutaraldehyde and mass ratio BSA/enzymes of 5.45 (w/w) were selected, their activities and stabilities at 40 oC, pH 6 and 250 rpm for five hours were evaluated. The selected Combi-CLEAs were used in GA production in a pneumatic reactor with 26 g.L-1 glucose at 40 oC, pH 6 and 10 vvm. Results showed conversion of 100 % and kinetic profile very similar to the free enzymes process. The reusability of Combi-CLEAs was also studied in ten batch-cycles of 5 hours. Operational half-life was calculated from kinetic profiles and first order inactivation model and presented a value of 31.50 hours. Combi-CLEAs of GOD and CAT showed to be relevant robust biocatalyst for GA application and production of glucose.O açúcar de cana-de-açúcar (sacarose) é uma matéria-prima produzida em abundância no Brasil, sendo muito atraente para produzir produtos com alto valor agregado. O ácido glucônico (AG) pode ser obtido por conversão multienzimática de sacarose, utilizando três enzimas. Na primeira etapa a enzima invertase (INV) faz inversão da sacarose em glicose e frutose, na segunda etapa a enzima glicose-oxidase (GOD) oxida a glicose formando AG e peróxido de hidrogênio (H2O2) e na última etapa a enzima catalase (CAT) decompõem H2O2. Neste estudo, a sacarose foi invertida num processo de batelada alimentada catalisado por agregados reticulados(CLEA) de INV. AG foi produzido por oxidação de glicose catalisada por CLEAs combinados (Combi-CLEAs) de CAT de fígado bovino e GOD de Aspergillus niger em reator pneumático operado em batelada. A CAT apresenta uma estrutura tetramérica que dificulta a sua estabilização através da técnica convencional de imobilização. Assim, prepararam-se CLEAs de CAT separadamente, avaliando a influência de agentes precipitantes e intercruzantes, bem como albumina de soro bovino (BSA) como proteína de alimentação sobre as propriedades catalíticas, estabilidade térmica e resistência ao transporte de massa dos derivados. Os derivados mais ativos foram preparados utilizando sulfato de amônia como agente precipitante, glutaraldeído 50 mM como agente de entrecruzamento e proporção de massa BSA/CAT de 3,0. Estes derivados foram quase totalmente ativos (rendimento de imobilização até 100 %) e altamente estáveis à 40 °C e pH 7,0 (~ 80% da atividade inicial foi recuperação após 200 h nestas condições). A co-precipitação de BSA em conjunto com CAT reduziu o tamanho dos clusters, sugerindo uma diminuição dos efeitos difusivos dentro do biocatalisador. Um modelo cinético empírico foi ajustado aos dados experimentais de velocidades iniciais vs. concentração de substrato e, foi utilizado para fazer uma análise comparativa da transferência de massa em derivados com e sem BSA. Os resultados sugeriram que o principal efeito que diferencia a enzima livre e os dois derivados analisados foi de natureza difusiva. De fato, o fator de efetividade dos agregados reticulados de CAT com BSA aumentou cerca de 4 vezes. O delineamento experimental e a análise da metodologia da superfície de resposta mostraram que a imobilização não alterou as condições de atividade máxima da CAT, que se verificou ser de 30 oC e pH ≥ 7,0 para todos os biocatalisadores. Na segunda parte do trabalho, a INV foi imobilizada pela metodologia CLEA utilizando proteína de soja como proteína espaçadora como uma alternativa à BSA, comumente usada. A INV imobilizada reteve cerca de 30 % da atividade inicial após ensaio de lixiviação enzimática. A INV imobilizada pôde ser reciclada em dez ensaios (bateladas de 4 h) de hidrólise de sacarose a 40 oC e pH 6,0, mantendo a conversão da reação acima de 75 %. A hidrólise de sacarose catalisada por INV imobilizada mostrou ser economicamente viável numa janela operacional construída com base em métricas econômicas para um processo de batelada alimentada com três alimentações de sacarose na concentração de substrato a 100 g.L-1 quando a conversão atingia 95 % . Este trabalho representa um avanço nesta área, pois utilizando um biocatalisador isento de suporte e reciclável; a produtividade específica (grama de produto por grama de biocatalisador por hora) de xarope de açúcar invertido foi a mais elevada já reportada pela literatura. Prepararam-se Combi-CLEAs de CAT e GOD, avaliando a influência de agentes precipitantes e intercruzantes, bem como BSA como proteína espaçadora sobre o rendimento de imobilização enzimática e estabilidade térmica de cada enzima. Selecionaram-se os Combi-CLEA preparados utilizando dimetoxietano como precipitante, glutaraldeído 25 mM e razão de massa BSA / enzimas de 5,45 (m/m), avaliando as suas atividades e estabilidades a 40 oC, pH 6 e 250 rpm durante cinco horas. Os Combi-CLEAs selecionados foram utilizados na produção de AG num reator pneumático a partir de 26 g.L-1 de glucose a 40 oC, pH 6 e 10 vvm. Os resultados mostraram conversão de 100% e perfil cinético muito semelhante ao processo de enzimas livres. A reutilização de Combi-CLEAs foi também estudada em 10 ciclos reacionais de 5 horas. A meia-vida operacional foi calculada a partir dos perfis cinéticos e do modelo de inativação de primeira ordem e apresentou valor de 31,50 horas. Este trabalho pode concluir que os Combi-CLEAs de GOD e CAT são biocatalisadores relevantes e robustos para aplicação na produção de GA a partir de glicose.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 141647/2013-2CNPq: 402850/2013-0engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarÁcido glucônicoAçúcar invertidoProteína de sojaEngenharia de biocatalisadorGluconic acidInverted sugarSoy ProteinBiocatalyst engineeringENGENHARIAS::ENGENHARIA QUIMICAEngenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutoseBiocatalyst engineering applied to the improvement of cross-linked enzyme aggregates aiming at the multienzymatic conversion of sucrose to gluconic acid and fructose syrupinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnlineinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseACOM.pdfTeseACOM.pdfapplication/pdf4093039https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/9469/1/TeseACOM.pdf467d1757ef67b458df6811ea572ffb46MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/9469/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseACOM.pdf.txtTeseACOM.pdf.txtExtracted texttext/plain240257https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/9469/3/TeseACOM.pdf.txt46efce3ed98417aa2e44bbe7b4435576MD53THUMBNAILTeseACOM.pdf.jpgTeseACOM.pdf.jpgIM Thumbnailimage/jpeg7388https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/9469/4/TeseACOM.pdf.jpg547c0dd26f9c804bbbd10cde035fe185MD54ufscar/94692019-09-11 03:02:48.683oai:repositorio.ufscar.br:ufscar/9469TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T12:55:24.986299Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose
dc.title.alternative.eng.fl_str_mv Biocatalyst engineering applied to the improvement of cross-linked enzyme aggregates aiming at the multienzymatic conversion of sucrose to gluconic acid and fructose syrup
title Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose
spellingShingle Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose
Mafra, Agnes Cristina Oliveira
Ácido glucônico
Açúcar invertido
Proteína de soja
Engenharia de biocatalisador
Gluconic acid
Inverted sugar
Soy Protein
Biocatalyst engineering
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose
title_full Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose
title_fullStr Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose
title_full_unstemmed Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose
title_sort Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose
author Mafra, Agnes Cristina Oliveira
author_facet Mafra, Agnes Cristina Oliveira
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/6868423702339380
dc.contributor.author.fl_str_mv Mafra, Agnes Cristina Oliveira
dc.contributor.advisor1.fl_str_mv Tardioli, Paulo Waldir
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0808991927126468
dc.contributor.advisor-co1.fl_str_mv Ribeiro, Marcelo Perencin de Arruda
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/0381402687491195
contributor_str_mv Tardioli, Paulo Waldir
Ribeiro, Marcelo Perencin de Arruda
dc.subject.por.fl_str_mv Ácido glucônico
Açúcar invertido
Proteína de soja
Engenharia de biocatalisador
topic Ácido glucônico
Açúcar invertido
Proteína de soja
Engenharia de biocatalisador
Gluconic acid
Inverted sugar
Soy Protein
Biocatalyst engineering
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Gluconic acid
Inverted sugar
Soy Protein
Biocatalyst engineering
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description Sugarcane sugar (sucrose) is a raw material produced in abundance in Brazil; it is very attractive to produce high added-value products. Gluconic acid (GA) can be obtained by multienzymatic conversion of sucrose, using three enzymes. Firstly, invertase (INV), responsible for the inversion of sucrose into glucose and fructose, next glucose oxidase (GOD) for the glucose oxidation and the last enzyme is catalase (CAT) used for the decomposition of hydrogen peroxide (H2O2, by-product from glucose oxidation). In this study, the sucrose was inverted in a fed-batch process catalyzed by INV immobilized as cross-linked enzyme aggregate (CLEA). The GA was produced by glucose oxidation catalyzed by combinate CLEAs (Combi-CLEAs) of CAT from bovine liver and GOD from Aspergillus niger in a batch pneumatic reactor. CAT has a tetrameric structure which complicates its stabilization through conventional immobilization technique. CLEAs of CAT were prepared, evaluating the effect of precipitant and cross-linking agents, as well as bovine serum albumin (BSA) as feeder protein on the catalytic properties, thermal stability, and mass transport resistance of the derivatives. The most active derivatives were prepared using ammonium sulfate as precipitant agent, 50 mM glutaraldehyde as cross-linker, and BSA/CAT mass ratio of 3.0. These derivatives were almost completely active (yield of immobilization up to 100%) and highly stable at 40 oC and pH 7.0 (~ 80% of the initial activity was recovery after 200 h under these conditions). The co-precipitation of BSA together with CAT reduced the size of clusters suggesting a decrease of diffusive effects within the biocatalyst. Empirical kinetic model was fitted to the experimental data of initial rate vs. substrate concentration and used to make a comparative analysis of mass transfer into derivatives with and without BSA. Results suggested that the main effect that differentiates the free enzyme and the two derivatives analyzed was of diffusive nature. In fact, the effectiveness factor of the crosslinked aggregates of catalase with BSA increased approximately 4 times. The statistical experimental design and the analysis of the response surface methodology showed that the immobilization did not alter the conditions of maximum activity of the CAT, which were found to be 30 oC and pH  7.0 for all biocatalysts. Secondly, INV was immobilized by CLEA methodology using soy protein as feeder molecules as an alternative to the commonly used expensive BSA. The immobilized INV retained around 30% of the initial activity after enzyme leaching assay. The immobilized INV was recycled tenfold in 4 h-batches of hydrolysis of sucrose at 40 oC and pH 6.0, maintaining the reaction conversion above 75 %. The hydrolysis of sucrose catalyzed by immobilized INV showed to be economically feasible in an operational window built based on economic metrics for a fed-batch process with three intermittent sucrose feeds to restore the substrate concentration at 100 g.L-1 when the conversion reaches 95 %. This work represents an advance in the field, because using a carrier-free and recyclable biocatalyst the specific productivity (gram of products per gram of biocatalyst per hour) of inverted sugar syrup was as high as those previously reported for INV immobilized on solid carriers that may dilute its volumetric activity and increase the cost of the biocatalyst. Combi-CLEAs of CAT and GOD were prepared, evaluating the influence of precipitant and cross-linking agents, as well as BSA as feeder protein on enzyme immobilization yield and thermal stability of each enzyme. Combi-CLEAs were prepared using dimethoxyethane as precipitant, 25 mM glutaraldehyde and mass ratio BSA/enzymes of 5.45 (w/w) were selected, their activities and stabilities at 40 oC, pH 6 and 250 rpm for five hours were evaluated. The selected Combi-CLEAs were used in GA production in a pneumatic reactor with 26 g.L-1 glucose at 40 oC, pH 6 and 10 vvm. Results showed conversion of 100 % and kinetic profile very similar to the free enzymes process. The reusability of Combi-CLEAs was also studied in ten batch-cycles of 5 hours. Operational half-life was calculated from kinetic profiles and first order inactivation model and presented a value of 31.50 hours. Combi-CLEAs of GOD and CAT showed to be relevant robust biocatalyst for GA application and production of glucose.
publishDate 2017
dc.date.issued.fl_str_mv 2017-02-17
dc.date.accessioned.fl_str_mv 2018-02-21T16:49:58Z
dc.date.available.fl_str_mv 2018-02-21T16:49:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MAFRA, Agnes Cristina Oliveira. Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose. 2017. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9469.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/9469
identifier_str_mv MAFRA, Agnes Cristina Oliveira. Engenharia de biocatalisadores aplicada à síntese de CLEAs para a aplicação na conversão multienzimática de sacarose à ácido glucônico e xarope de frutose. 2017. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9469.
url https://repositorio.ufscar.br/handle/ufscar/9469
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/9469/1/TeseACOM.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/9469/2/license.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/9469/3/TeseACOM.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/9469/4/TeseACOM.pdf.jpg
bitstream.checksum.fl_str_mv 467d1757ef67b458df6811ea572ffb46
ae0398b6f8b235e40ad82cba6c50031d
46efce3ed98417aa2e44bbe7b4435576
547c0dd26f9c804bbbd10cde035fe185
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351130780598272