Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Andrade, Raíssa Gabrielle Silva Araújo
Orientador(a): Béttega, Vádila Giovana Guerra lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química - PPGEQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/12470
Resumo: The industrial activities are the main cause of the particulate material emission, which results in the elevation of air pollution indices and respiratory diseases. One of the most common types of equipment to reduce emitted particle concentration in the atmosphere is the electrostatic precipitator, for its high versatility and for achieving high collection efficiency. Its operation consists of the air ionization containing the dispersed particles which will be electrically charged by the ions formed and attracted to the collecting electrodes, which reduces the particulate material concentration. The efficiency of electrostatic precipitation depends directly on the operating conditions and the geometrical characteristics of the equipment. In this context, the present study evaluated the influence of the operating conditions such as air velocity (1.03, 2.04 and 4.08 cm/s), electrical field (3.08-3.38 kV/cm) and discharge electrodes on NaCl nanoparticles removal efficiency. The electrostatic precipitator used was a single-stage wire-plate type, with two collecting plates with a height and length of 10 and 30 cm, respectively, spaced 6.5 cm apart. The studies were conducted in 3 steps, step 1 consisted of the discharge electrode number variation (1-4), with a wire diameter of 0.4 mm, spaced apart in 6.5 cm, with NaCl solution concentration of 0.1 and 0.5 g/L. In step 2, the configurations that presented the lowest collection efficiency in step 1 (1 and 2 wire experiments) were selected to compare the results obtained with the experiments performed with a new wire diameter, 0.3 mm, spaced at 6.5 cm. In step 3, the effect of increased wire spacing was analyzed, and the results of the experiments carried out in the previous 2-wire discharge steps, with wire diameters of 0.3 and 0.4 mm, were compared to the obtained data. for both wire diameters, with the new 12 cm spacing. The results proved the precipitator's efficiency in removing nanoparticles and evidenced the negative effect of the velocity increase in particle collection. The electrical field improved the collection efficiencies, due to the higher electric currents. Also, reducing the number of discharge wires impaired particulate collection in most experiments, as fewer emitters reduce the generated electrical current. The data obtained with the wire diameter of 0.3 mm proved the positive effect of the wire diameter reduction in the precipitator efficiency, as well as the increase in the discharge wire spacing. The results were used to determine the most predominant forces in the phenomenon of electrostatic precipitation, for the operating conditions used. From the obtained data, it was identified that the electric forces exerted a greater influence on the particle collection, which was intensified with the increase of the electrical field. In some cases, the same behavior occurred with an increasing number of wires. In contrast, the increase in velocity increased the action of viscous forces. Thus, the data collected showed that the best efficiencies were obtained for the lowest speed, along with the largest electric field, 3.38 kV/cm, and the best performance configuration used 4 discharge wires, with a concentration of 0.1 g/L with 99.99% removal. Finally, a statistical analysis was performed with the main operating conditions of each step, from which it was possible to prove the significant effect of the number of wires and the diameter of the wires, in steps 1 and 2. However, the data analysis of the step 3 showed that the wire spacing was not significant for the 3.08 and 3.38 kV/cm electric fields and had a very small positive effect for the 3.08 and 3.23 kV/cm electric fields.
id SCAR_5acd0afe70a400393c6832b5f1a9629e
oai_identifier_str oai:repositorio.ufscar.br:ufscar/12470
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Andrade, Raíssa Gabrielle Silva AraújoBéttega, Vádila Giovana Guerrahttp://lattes.cnpq.br/0752059622240208http://lattes.cnpq.br/77118737930195532020-04-27T12:09:43Z2020-04-27T12:09:43Z2020-02-18ANDRADE, Raíssa Gabrielle Silva Araújo. Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas. 2020. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12470.https://repositorio.ufscar.br/handle/ufscar/12470The industrial activities are the main cause of the particulate material emission, which results in the elevation of air pollution indices and respiratory diseases. One of the most common types of equipment to reduce emitted particle concentration in the atmosphere is the electrostatic precipitator, for its high versatility and for achieving high collection efficiency. Its operation consists of the air ionization containing the dispersed particles which will be electrically charged by the ions formed and attracted to the collecting electrodes, which reduces the particulate material concentration. The efficiency of electrostatic precipitation depends directly on the operating conditions and the geometrical characteristics of the equipment. In this context, the present study evaluated the influence of the operating conditions such as air velocity (1.03, 2.04 and 4.08 cm/s), electrical field (3.08-3.38 kV/cm) and discharge electrodes on NaCl nanoparticles removal efficiency. The electrostatic precipitator used was a single-stage wire-plate type, with two collecting plates with a height and length of 10 and 30 cm, respectively, spaced 6.5 cm apart. The studies were conducted in 3 steps, step 1 consisted of the discharge electrode number variation (1-4), with a wire diameter of 0.4 mm, spaced apart in 6.5 cm, with NaCl solution concentration of 0.1 and 0.5 g/L. In step 2, the configurations that presented the lowest collection efficiency in step 1 (1 and 2 wire experiments) were selected to compare the results obtained with the experiments performed with a new wire diameter, 0.3 mm, spaced at 6.5 cm. In step 3, the effect of increased wire spacing was analyzed, and the results of the experiments carried out in the previous 2-wire discharge steps, with wire diameters of 0.3 and 0.4 mm, were compared to the obtained data. for both wire diameters, with the new 12 cm spacing. The results proved the precipitator's efficiency in removing nanoparticles and evidenced the negative effect of the velocity increase in particle collection. The electrical field improved the collection efficiencies, due to the higher electric currents. Also, reducing the number of discharge wires impaired particulate collection in most experiments, as fewer emitters reduce the generated electrical current. The data obtained with the wire diameter of 0.3 mm proved the positive effect of the wire diameter reduction in the precipitator efficiency, as well as the increase in the discharge wire spacing. The results were used to determine the most predominant forces in the phenomenon of electrostatic precipitation, for the operating conditions used. From the obtained data, it was identified that the electric forces exerted a greater influence on the particle collection, which was intensified with the increase of the electrical field. In some cases, the same behavior occurred with an increasing number of wires. In contrast, the increase in velocity increased the action of viscous forces. Thus, the data collected showed that the best efficiencies were obtained for the lowest speed, along with the largest electric field, 3.38 kV/cm, and the best performance configuration used 4 discharge wires, with a concentration of 0.1 g/L with 99.99% removal. Finally, a statistical analysis was performed with the main operating conditions of each step, from which it was possible to prove the significant effect of the number of wires and the diameter of the wires, in steps 1 and 2. However, the data analysis of the step 3 showed that the wire spacing was not significant for the 3.08 and 3.38 kV/cm electric fields and had a very small positive effect for the 3.08 and 3.23 kV/cm electric fields.As atividades industriais são a principal causa da emissão de material particulado, o que acarreta a elevação dos índices de poluição do ar e doenças respiratórias na população. Um dos equipamentos mais utilizados para redução da concentração das partículas emitidas na natureza é o precipitador eletrostático, pela sua alta versatilidade e por atingir elevada eficiência de coleta. Seu funcionamento consiste em ionizar o ar contendo partículas dispersadas que são carregadas eletricamente pelos íons formados e atraídas para os eletrodos de coleta, reduzindo a concentração de material particulado. A eficiência da precipitação eletrostática depende diretamente das condições operacionais e das características geométricas do equipamento. Com base no que foi exposto, o presente trabalho avaliou a influência das condições operacionais da velocidade do ar (1,03, 2,04 e 4,08 cm/s), do campo elétrico (3,08-3,38 kV/cm) e dos eletrodos de descarga na eficiência de remoção de nanopartículas de NaCl. O precipitador eletrostático utilizado foi do tipo placa-fio de simples estágio, com duas placas coletoras com altura e comprimento de 10 e 30 cm, respectivamente, espaçadas em 6,5 cm. Os estudos foram conduzidos em 3 etapas, a etapa 1 consistiu na variação do número de eletrodos de descarga (1-4), para o diâmetro de fio de 0,4 mm, espaçados em 6,5 cm, com as concentrações da solução de NaCl de 0,1 e 0,5 g/L. Na etapa 2, foram selecionadas as configurações que apresentaram menor eficiência de coleta na etapa 1 (experimentos com 1 e 2 fios), a fim de comparar os resultados obtidos com os experimentos realizados com um novo diâmetro de fio, 0,3 mm, espaçados em 6,5 cm. Na etapa 3, foi analisado o efeito do aumento do espaçamento entre os fios, os resultados dos experimentos realizados nas etapas anteriores com 2 fios de descarga, com os diâmetros de fio de 0,3 e 0,4 mm, foram comparados aos dados obtidos para ambos os diâmetros de fios, com o novo espaçamento de 12 cm. Os resultados comprovaram a eficiência do precipitador em remover nanopartículas, e evidenciaram o efeito negativo do aumento da velocidade na coleta de partículas. O aumento do campo elétrico favoreceu as eficiências de coleta, em decorrência das maiores correntes elétricas. Além disso, a redução do número de fios de descarga prejudicou a coleta de partículas na maior parte dos experimentos, visto que um menor número de emissores reduz a corrente elétrica gerada. Os dados obtidos com o diâmetro de fio de 0,3 mm comprovaram o efeito positivo da redução do diâmetro de fio na eficiência do precipitador, bem como o aumento do espaçamento entre os fios de descarga. Os resultados foram utilizados para determinação das forças de maior predominância no fenômeno da precipitação eletrostática, para as condições operacionais utilizadas. Pelos dados obtidos, foi identificado que as forças elétricas exercem maior influência na coleta de partículas, que são intensificadas com o aumento do campo elétrico. Em alguns casos, o mesmo comportamento ocorreu com o aumento do número de fios. Em contrapartida, o aumento da velocidade elevou a atuação das forças viscosas. Assim, os dados coletados mostraram que as melhores eficiências foram obtidas para a velocidade mais baixa, juntamente com o maior campo elétrico, 3,38 kV/cm, sendo a configuração de melhor desempenho a que utilizou 4 fios de descarga, com a concentração de 0,1 g/L, com 99,99% de remoção. Por fim foi realizada uma análise estatística com as principais condições operacionais de cada etapa, a partir da qual foi possível comprovar o efeito significativo do número de fios e do diâmetro dos fios, nas etapas 1 e 2. Entretanto, a análise dos dados da etapa 3 mostrou que o espaçamento entre os fios não foi significativo para os campos elétricos de 3,08 e 3,38 kV/cm e apresentou um efeito positivo muito pequeno para os campos elétricos de 3,08 e 3,23 kV/cm.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 132829/2018-5porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessPrecipitador eletrostáticoNanopartículasEficiência de coletaElectrostatic precipitatorNanoparticlesCollection efficiencyENGENHARIAS::ENGENHARIA QUIMICAPrecipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículasElectrostatic precipitator: influence of operating conditions and discharge electrodes on the efficiency of nanoparticle removalinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDISSERTAÇÃO RAÍSSA ANDRADE - VERSÃO FINAL.pdfDISSERTAÇÃO RAÍSSA ANDRADE - VERSÃO FINAL.pdfDissertação na área de Controle Ambiental do Programa de Pós-Graduação em Engenharia Químicaapplication/pdf3377730https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/1/DISSERTA%c3%87%c3%83O%20RA%c3%8dSSA%20ANDRADE%20-%20VERS%c3%83O%20FINAL.pdf0f4f9cdb1d07b060cae78ec4e979fcc4MD51carta comprovante.pdfcarta comprovante.pdfCarta Comprovanteapplication/pdf137903https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/2/carta%20comprovante.pdf061d156898c77b9f6a542232b63c77f1MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTDISSERTAÇÃO RAÍSSA ANDRADE - VERSÃO FINAL.pdf.txtDISSERTAÇÃO RAÍSSA ANDRADE - VERSÃO FINAL.pdf.txtExtracted texttext/plain232672https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/4/DISSERTA%c3%87%c3%83O%20RA%c3%8dSSA%20ANDRADE%20-%20VERS%c3%83O%20FINAL.pdf.txtc50f5e01ef659cc91ce330e685c00d13MD54carta comprovante.pdf.txtcarta comprovante.pdf.txtExtracted texttext/plain1025https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/6/carta%20comprovante.pdf.txt9785b47da124f75db4e1fcc3f2765f5fMD56THUMBNAILDISSERTAÇÃO RAÍSSA ANDRADE - VERSÃO FINAL.pdf.jpgDISSERTAÇÃO RAÍSSA ANDRADE - VERSÃO FINAL.pdf.jpgIM Thumbnailimage/jpeg6728https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/5/DISSERTA%c3%87%c3%83O%20RA%c3%8dSSA%20ANDRADE%20-%20VERS%c3%83O%20FINAL.pdf.jpg232cd778a4e020f754809eafa0144425MD55carta comprovante.pdf.jpgcarta comprovante.pdf.jpgIM Thumbnailimage/jpeg5457https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/7/carta%20comprovante.pdf.jpgd1eb258ac3ba63eb25893be8296c7b1dMD57ufscar/124702020-07-08 21:59:58.809oai:repositorio.ufscar.br:ufscar/12470Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T12:59:04.156068Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas
dc.title.alternative.eng.fl_str_mv Electrostatic precipitator: influence of operating conditions and discharge electrodes on the efficiency of nanoparticle removal
title Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas
spellingShingle Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas
Andrade, Raíssa Gabrielle Silva Araújo
Precipitador eletrostático
Nanopartículas
Eficiência de coleta
Electrostatic precipitator
Nanoparticles
Collection efficiency
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas
title_full Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas
title_fullStr Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas
title_full_unstemmed Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas
title_sort Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas
author Andrade, Raíssa Gabrielle Silva Araújo
author_facet Andrade, Raíssa Gabrielle Silva Araújo
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/7711873793019553
dc.contributor.author.fl_str_mv Andrade, Raíssa Gabrielle Silva Araújo
dc.contributor.advisor1.fl_str_mv Béttega, Vádila Giovana Guerra
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0752059622240208
contributor_str_mv Béttega, Vádila Giovana Guerra
dc.subject.por.fl_str_mv Precipitador eletrostático
Nanopartículas
Eficiência de coleta
topic Precipitador eletrostático
Nanopartículas
Eficiência de coleta
Electrostatic precipitator
Nanoparticles
Collection efficiency
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Electrostatic precipitator
Nanoparticles
Collection efficiency
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description The industrial activities are the main cause of the particulate material emission, which results in the elevation of air pollution indices and respiratory diseases. One of the most common types of equipment to reduce emitted particle concentration in the atmosphere is the electrostatic precipitator, for its high versatility and for achieving high collection efficiency. Its operation consists of the air ionization containing the dispersed particles which will be electrically charged by the ions formed and attracted to the collecting electrodes, which reduces the particulate material concentration. The efficiency of electrostatic precipitation depends directly on the operating conditions and the geometrical characteristics of the equipment. In this context, the present study evaluated the influence of the operating conditions such as air velocity (1.03, 2.04 and 4.08 cm/s), electrical field (3.08-3.38 kV/cm) and discharge electrodes on NaCl nanoparticles removal efficiency. The electrostatic precipitator used was a single-stage wire-plate type, with two collecting plates with a height and length of 10 and 30 cm, respectively, spaced 6.5 cm apart. The studies were conducted in 3 steps, step 1 consisted of the discharge electrode number variation (1-4), with a wire diameter of 0.4 mm, spaced apart in 6.5 cm, with NaCl solution concentration of 0.1 and 0.5 g/L. In step 2, the configurations that presented the lowest collection efficiency in step 1 (1 and 2 wire experiments) were selected to compare the results obtained with the experiments performed with a new wire diameter, 0.3 mm, spaced at 6.5 cm. In step 3, the effect of increased wire spacing was analyzed, and the results of the experiments carried out in the previous 2-wire discharge steps, with wire diameters of 0.3 and 0.4 mm, were compared to the obtained data. for both wire diameters, with the new 12 cm spacing. The results proved the precipitator's efficiency in removing nanoparticles and evidenced the negative effect of the velocity increase in particle collection. The electrical field improved the collection efficiencies, due to the higher electric currents. Also, reducing the number of discharge wires impaired particulate collection in most experiments, as fewer emitters reduce the generated electrical current. The data obtained with the wire diameter of 0.3 mm proved the positive effect of the wire diameter reduction in the precipitator efficiency, as well as the increase in the discharge wire spacing. The results were used to determine the most predominant forces in the phenomenon of electrostatic precipitation, for the operating conditions used. From the obtained data, it was identified that the electric forces exerted a greater influence on the particle collection, which was intensified with the increase of the electrical field. In some cases, the same behavior occurred with an increasing number of wires. In contrast, the increase in velocity increased the action of viscous forces. Thus, the data collected showed that the best efficiencies were obtained for the lowest speed, along with the largest electric field, 3.38 kV/cm, and the best performance configuration used 4 discharge wires, with a concentration of 0.1 g/L with 99.99% removal. Finally, a statistical analysis was performed with the main operating conditions of each step, from which it was possible to prove the significant effect of the number of wires and the diameter of the wires, in steps 1 and 2. However, the data analysis of the step 3 showed that the wire spacing was not significant for the 3.08 and 3.38 kV/cm electric fields and had a very small positive effect for the 3.08 and 3.23 kV/cm electric fields.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-04-27T12:09:43Z
dc.date.available.fl_str_mv 2020-04-27T12:09:43Z
dc.date.issued.fl_str_mv 2020-02-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ANDRADE, Raíssa Gabrielle Silva Araújo. Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas. 2020. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12470.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/12470
identifier_str_mv ANDRADE, Raíssa Gabrielle Silva Araújo. Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas. 2020. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12470.
url https://repositorio.ufscar.br/handle/ufscar/12470
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/1/DISSERTA%c3%87%c3%83O%20RA%c3%8dSSA%20ANDRADE%20-%20VERS%c3%83O%20FINAL.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/2/carta%20comprovante.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/3/license_rdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/4/DISSERTA%c3%87%c3%83O%20RA%c3%8dSSA%20ANDRADE%20-%20VERS%c3%83O%20FINAL.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/6/carta%20comprovante.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/5/DISSERTA%c3%87%c3%83O%20RA%c3%8dSSA%20ANDRADE%20-%20VERS%c3%83O%20FINAL.pdf.jpg
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12470/7/carta%20comprovante.pdf.jpg
bitstream.checksum.fl_str_mv 0f4f9cdb1d07b060cae78ec4e979fcc4
061d156898c77b9f6a542232b63c77f1
e39d27027a6cc9cb039ad269a5db8e34
c50f5e01ef659cc91ce330e685c00d13
9785b47da124f75db4e1fcc3f2765f5f
232cd778a4e020f754809eafa0144425
d1eb258ac3ba63eb25893be8296c7b1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351158820569088