Obtenção de nanocelulose bacteriana de kombucha

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Góes, Thaís Soares de
Orientador(a): Silva, Adriana de Oliveira Delgado lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus Sorocaba
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência dos Materiais - PPGCM-So
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/13522
Resumo: In the last years, sustainable materials that provide less environmental impact are gaining special attention. In this context, cellulose, a natural and abundant polymer from several renewable vegetable and microbial sources, is being highlighted in related literature. Bacterial cellulose (BC) from microbial sources presents several advantageous properties as lignin and hemicellulose absence, high resistance to traction, elasticity, durability, and a high degree of crystallinity. Also, BC is biodegradable, non-toxic, and biocompatible. A less explored source of BC includes Kombucha membranes (KM), a by-product of Kombucha's ancient beverage. KM are cellulosic pellicles derived from the fermentation of black or green tea broth. Thus, the main objective of this study was the production and characterization of the physical and chemical properties of BC obtained from Kombucha’s bacterial cellulose membranes (KBCM) based on the fermentation of green tea broth with added sucrose. We also aimed at the production of bacterial nanocellulose from Kombucha beverage (BNKB) via a hydrolytic reaction. KBCM was produced using a symbiotic consortium of bacteria and yeast during the fermentation of green tea broth and sucrose inoculated with an initial KBCM solution and fermented at 35°C for 21 days. After, the KBCM solution was purified using distilled water and sodium hydroxide (NaOH). BKNB were extracted via KBCM acid hydrolysis with 64% sulfuric acid at 50°C, and reaction time variation, followed by dialysis processes until reach a neutral pH value. KBCM were analyzed before and after the purification process using atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). Suspensions containing BNKB were characterized by AFM only. KBCM before and after purification were characterized by the techniques of atomic force microscopy (AFM), scanning electron microscopy (SEM), dispersive energy spectroscopy (EDS), infrared absorption spectroscopy with Fourier transform (FTIR) and Diffraction X-ray (XRD). BNKB suspensions were characterized only by AFM. AFM and SEM analyzes revealed the morphology of the BNKB structures in long fibrous chains, which were clustered and interlaced. The relative intensities by XRD varied after the purification process, indicating a possible change in crystallinity. The presence of carbon and oxygen elements in KBCM before and after purification were also confirmed by EDS. Thus, it is concluded that through the mentioned characteristics and the BNKB morphology, they offer resistance in their cellulosic chains during the acid attack, which can be observed by the AFM images, due to the presence of curvatures in the KC nanofibrils, which by time it leverages it as a promising source of raw material for the production of new sustainable materials.
id SCAR_74e198aafe82fb10cdaba6aa9941c835
oai_identifier_str oai:repositorio.ufscar.br:ufscar/13522
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Góes, Thaís Soares deSilva, Adriana de Oliveira Delgadohttp://lattes.cnpq.br/2707979913713089Menezes, Aparecido Junior dehttp://lattes.cnpq.br/0484426340349483http://lattes.cnpq.br/03572565879834642020-12-04T16:37:51Z2020-12-04T16:37:51Z2020-03-24GÓES, Thaís Soares de. Obtenção de nanocelulose bacteriana de kombucha. 2020. Dissertação (Mestrado em Ciência dos Materiais) – Universidade Federal de São Carlos, Sorocaba, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13522.https://repositorio.ufscar.br/handle/ufscar/13522In the last years, sustainable materials that provide less environmental impact are gaining special attention. In this context, cellulose, a natural and abundant polymer from several renewable vegetable and microbial sources, is being highlighted in related literature. Bacterial cellulose (BC) from microbial sources presents several advantageous properties as lignin and hemicellulose absence, high resistance to traction, elasticity, durability, and a high degree of crystallinity. Also, BC is biodegradable, non-toxic, and biocompatible. A less explored source of BC includes Kombucha membranes (KM), a by-product of Kombucha's ancient beverage. KM are cellulosic pellicles derived from the fermentation of black or green tea broth. Thus, the main objective of this study was the production and characterization of the physical and chemical properties of BC obtained from Kombucha’s bacterial cellulose membranes (KBCM) based on the fermentation of green tea broth with added sucrose. We also aimed at the production of bacterial nanocellulose from Kombucha beverage (BNKB) via a hydrolytic reaction. KBCM was produced using a symbiotic consortium of bacteria and yeast during the fermentation of green tea broth and sucrose inoculated with an initial KBCM solution and fermented at 35°C for 21 days. After, the KBCM solution was purified using distilled water and sodium hydroxide (NaOH). BKNB were extracted via KBCM acid hydrolysis with 64% sulfuric acid at 50°C, and reaction time variation, followed by dialysis processes until reach a neutral pH value. KBCM were analyzed before and after the purification process using atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). Suspensions containing BNKB were characterized by AFM only. KBCM before and after purification were characterized by the techniques of atomic force microscopy (AFM), scanning electron microscopy (SEM), dispersive energy spectroscopy (EDS), infrared absorption spectroscopy with Fourier transform (FTIR) and Diffraction X-ray (XRD). BNKB suspensions were characterized only by AFM. AFM and SEM analyzes revealed the morphology of the BNKB structures in long fibrous chains, which were clustered and interlaced. The relative intensities by XRD varied after the purification process, indicating a possible change in crystallinity. The presence of carbon and oxygen elements in KBCM before and after purification were also confirmed by EDS. Thus, it is concluded that through the mentioned characteristics and the BNKB morphology, they offer resistance in their cellulosic chains during the acid attack, which can be observed by the AFM images, due to the presence of curvatures in the KC nanofibrils, which by time it leverages it as a promising source of raw material for the production of new sustainable materials.Atenção especial tem sido dada nos últimos anos à busca por materiais sustentáveis que ofereçam menores impactos ao meio ambiente. Dessa forma, destaca-se a celulose, polímero natural abundante e presente em diferentes fontes renováveis, sejam vegetais ou microbianas. As últimas são capazes de produzir a chamada celulose bacteriana (CB), com vantagens como: ausência de lignina e hemiceluloses, alta resistência à tração, elasticidade, durabilidade e alta cristalinidade, além de ser biodegradável, atóxica e biocompatível. As membranas de Kombucha (KC), são fontes de CB ainda pouco exploradas. A KC, é subproduto de bebida milenar, consideradas películas celulósicas que podem ser obtidas por meio da fermentação de chá preto ou verde. Com isso, o objetivo deste estudo foi a produção e a caracterização das propriedades físicas e químicas de CB, a partir das membranas de celulose bacteriana de Kombucha (MCBK) cultivadas em chá verde e sacarose, além da obtenção de nanocelulose bacteriana de Kombucha (NCCB), via reação hidrolítica. As MCBK foram produzidas por meio de um consórcio simbiótico de leveduras e bactérias, cultivadas pela fermentação de chá verde e sacarose, a partir de um pré-inócúlo da própria MCBK, mantidos em estufa a 35°C por 21 dias, os quais foram purificadas com água destilada e hidróxido de sódio (NaOH) posteriormente. Para as suspensões de NCCB, estas foram obtidas mediante reação de hidrólise ácida das MCBK, com ácido sulfúrico (H2SO4) a 64% e 50°C, variando o tempo reacional, seguida do processo de diálise até pH neutro. As MCBK antes e após purificação foram caracterizadas mediante as técnicas de microscopia de força atômica (AFM), microscopia eletrônica de varredura (MEV), espectroscopia de energia dispersiva (EDS), espectroscopia de absorção no infravermelho com transformada de Fourier (FTIR) e Difração de Raio-X (DRX). As suspensões de NCCB foram caracterizadas apenas por AFM. Análises de AFM e MEV revelaram a morfologia das estruturas das MCBK em longas cadeias fibrosas, que se apresentaram aglomeradas e entrelaçadas. As intensidades relativas por DRX variaram após o processo de purificação, indicando possível alteração na cristalinidade. A presença dos elementos carbono e oxigênio nas MCBK antes e após purificação também foram confirmados por EDS. Assim, conclui-se que por meio da caraterizações mencionadas e pela morfologia das NCCB, estas oferecem resistência em suas cadeias celulósicas durante o ataque ácido, que pode ser observado pelas imagens de AFM, devido a presença de curvaturas nas nanofibrilas de KC, que por vez a potencializa como fonte promissora de matéria-prima, para produção de novos materiais sustentáveis.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)88882.426827/2019-01porUniversidade Federal de São CarlosCâmpus SorocabaPrograma de Pós-Graduação em Ciência dos Materiais - PPGCM-SoUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCelulose bacterianaBiopolímeroFontes renováveisNanociênciaNanoscienceRenewable sourcesBacterial celluloseBiopolymersCIENCIAS EXATAS E DA TERRA::QUIMICAObtenção de nanocelulose bacteriana de kombuchaObtaining of bacterial nanocellulose from kombuchainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertacao_Finalizada_2020_dez.pdfDissertacao_Finalizada_2020_dez.pdfDissertação de Mestradoapplication/pdf3996257https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/1/Dissertacao_Finalizada_2020_dez.pdf27d0d54b7ae61f0f3b9c29d468391a65MD51carta_comprovante_versão final_Thaís.pdfcarta_comprovante_versão final_Thaís.pdfCarta comprovanteapplication/pdf97624https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/2/carta_comprovante_vers%c3%a3o%20final_Tha%c3%ads.pdf02feaaf26cb28b72f1f704a684562be6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTDissertacao_Finalizada_2020_dez.pdf.txtDissertacao_Finalizada_2020_dez.pdf.txtExtracted texttext/plain167142https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/4/Dissertacao_Finalizada_2020_dez.pdf.txt5c5f12c4e86dcf811d7af4f801436a11MD54carta_comprovante_versão final_Thaís.pdf.txtcarta_comprovante_versão final_Thaís.pdf.txtExtracted texttext/plain1371https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/6/carta_comprovante_vers%c3%a3o%20final_Tha%c3%ads.pdf.txt9de4e176e388aee734b76f8ae036f50fMD56THUMBNAILDissertacao_Finalizada_2020_dez.pdf.jpgDissertacao_Finalizada_2020_dez.pdf.jpgIM Thumbnailimage/jpeg5406https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/5/Dissertacao_Finalizada_2020_dez.pdf.jpg3a2353f82a0b5a9ec8677fcf093c6e4aMD55carta_comprovante_versão final_Thaís.pdf.jpgcarta_comprovante_versão final_Thaís.pdf.jpgIM Thumbnailimage/jpeg13447https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/7/carta_comprovante_vers%c3%a3o%20final_Tha%c3%ads.pdf.jpgd273ef059df321b03c759d17a0558276MD57ufscar/135222020-12-05 03:12:14.979oai:repositorio.ufscar.br:ufscar/13522Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T13:00:17.213014Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Obtenção de nanocelulose bacteriana de kombucha
dc.title.alternative.por.fl_str_mv Obtaining of bacterial nanocellulose from kombucha
title Obtenção de nanocelulose bacteriana de kombucha
spellingShingle Obtenção de nanocelulose bacteriana de kombucha
Góes, Thaís Soares de
Celulose bacteriana
Biopolímero
Fontes renováveis
Nanociência
Nanoscience
Renewable sources
Bacterial cellulose
Biopolymers
CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Obtenção de nanocelulose bacteriana de kombucha
title_full Obtenção de nanocelulose bacteriana de kombucha
title_fullStr Obtenção de nanocelulose bacteriana de kombucha
title_full_unstemmed Obtenção de nanocelulose bacteriana de kombucha
title_sort Obtenção de nanocelulose bacteriana de kombucha
author Góes, Thaís Soares de
author_facet Góes, Thaís Soares de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/0357256587983464
dc.contributor.author.fl_str_mv Góes, Thaís Soares de
dc.contributor.advisor1.fl_str_mv Silva, Adriana de Oliveira Delgado
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2707979913713089
dc.contributor.advisor-co1.fl_str_mv Menezes, Aparecido Junior de
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/0484426340349483
contributor_str_mv Silva, Adriana de Oliveira Delgado
Menezes, Aparecido Junior de
dc.subject.por.fl_str_mv Celulose bacteriana
Biopolímero
Fontes renováveis
Nanociência
Nanoscience
Renewable sources
Bacterial cellulose
Biopolymers
topic Celulose bacteriana
Biopolímero
Fontes renováveis
Nanociência
Nanoscience
Renewable sources
Bacterial cellulose
Biopolymers
CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA
description In the last years, sustainable materials that provide less environmental impact are gaining special attention. In this context, cellulose, a natural and abundant polymer from several renewable vegetable and microbial sources, is being highlighted in related literature. Bacterial cellulose (BC) from microbial sources presents several advantageous properties as lignin and hemicellulose absence, high resistance to traction, elasticity, durability, and a high degree of crystallinity. Also, BC is biodegradable, non-toxic, and biocompatible. A less explored source of BC includes Kombucha membranes (KM), a by-product of Kombucha's ancient beverage. KM are cellulosic pellicles derived from the fermentation of black or green tea broth. Thus, the main objective of this study was the production and characterization of the physical and chemical properties of BC obtained from Kombucha’s bacterial cellulose membranes (KBCM) based on the fermentation of green tea broth with added sucrose. We also aimed at the production of bacterial nanocellulose from Kombucha beverage (BNKB) via a hydrolytic reaction. KBCM was produced using a symbiotic consortium of bacteria and yeast during the fermentation of green tea broth and sucrose inoculated with an initial KBCM solution and fermented at 35°C for 21 days. After, the KBCM solution was purified using distilled water and sodium hydroxide (NaOH). BKNB were extracted via KBCM acid hydrolysis with 64% sulfuric acid at 50°C, and reaction time variation, followed by dialysis processes until reach a neutral pH value. KBCM were analyzed before and after the purification process using atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). Suspensions containing BNKB were characterized by AFM only. KBCM before and after purification were characterized by the techniques of atomic force microscopy (AFM), scanning electron microscopy (SEM), dispersive energy spectroscopy (EDS), infrared absorption spectroscopy with Fourier transform (FTIR) and Diffraction X-ray (XRD). BNKB suspensions were characterized only by AFM. AFM and SEM analyzes revealed the morphology of the BNKB structures in long fibrous chains, which were clustered and interlaced. The relative intensities by XRD varied after the purification process, indicating a possible change in crystallinity. The presence of carbon and oxygen elements in KBCM before and after purification were also confirmed by EDS. Thus, it is concluded that through the mentioned characteristics and the BNKB morphology, they offer resistance in their cellulosic chains during the acid attack, which can be observed by the AFM images, due to the presence of curvatures in the KC nanofibrils, which by time it leverages it as a promising source of raw material for the production of new sustainable materials.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-12-04T16:37:51Z
dc.date.available.fl_str_mv 2020-12-04T16:37:51Z
dc.date.issued.fl_str_mv 2020-03-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GÓES, Thaís Soares de. Obtenção de nanocelulose bacteriana de kombucha. 2020. Dissertação (Mestrado em Ciência dos Materiais) – Universidade Federal de São Carlos, Sorocaba, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13522.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/13522
identifier_str_mv GÓES, Thaís Soares de. Obtenção de nanocelulose bacteriana de kombucha. 2020. Dissertação (Mestrado em Ciência dos Materiais) – Universidade Federal de São Carlos, Sorocaba, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13522.
url https://repositorio.ufscar.br/handle/ufscar/13522
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus Sorocaba
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência dos Materiais - PPGCM-So
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus Sorocaba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/1/Dissertacao_Finalizada_2020_dez.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/2/carta_comprovante_vers%c3%a3o%20final_Tha%c3%ads.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/3/license_rdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/4/Dissertacao_Finalizada_2020_dez.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/6/carta_comprovante_vers%c3%a3o%20final_Tha%c3%ads.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/5/Dissertacao_Finalizada_2020_dez.pdf.jpg
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/13522/7/carta_comprovante_vers%c3%a3o%20final_Tha%c3%ads.pdf.jpg
bitstream.checksum.fl_str_mv 27d0d54b7ae61f0f3b9c29d468391a65
02feaaf26cb28b72f1f704a684562be6
e39d27027a6cc9cb039ad269a5db8e34
5c5f12c4e86dcf811d7af4f801436a11
9de4e176e388aee734b76f8ae036f50f
3a2353f82a0b5a9ec8677fcf093c6e4a
d273ef059df321b03c759d17a0558276
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351165555572736