Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Cardoso, Josiane de Oliveira
Orientador(a): Oliveira, Regina Vincenzi lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Química - PPGQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
RMN
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/7718
Resumo: This work reports studies of in vitro metabolism involving the compound 3-(2-chloro-6-fluorobenzyl)- imidazolidine-2,4-dione (LPSF-PT-31), a new 2-adrenoceptor agonist and, studies of enzyme phenotyping of montelukast, a drug used for the treatment of asthma. The results of this study revealed that LPSF-PT-31 is metabolized via CYP P450s in rat and human liver microsomes, producing only one major hydroxy-metabolite. LPSFPT- 31 showed a higher rate of in vitro metabolism in rats, which suggests a greater exposure to the drug in humans. The structural identification of LPSF-PT-31 metabolite’s was achieved through LC-MSn and 1H-NMR analysis that provided data to conclude that the hydroxylation occurred in the 5th position of the imidazolidine ring yielding to the production of 3-(2-chloro-6-fluorobenzyl)-5-hydroxyimidazolidine-2,4- dione. Related to the studies of enzyme phenotyping of montelukast, it was observed that the glucuronidation is the main clearance pathway of montelukast accounting for ~85% of the total apparent in vitro Clint (CYPs +UGTs) and that the CYP-mediated oxidation accounts only for ~15% to the overall metabolism of the drug, being montelukast acyl-β-D-glucuronide and montelukast 1,2 diol the major metabolites formed via UGTs and CYPs, respectively. Kinetic studies, correlation analysis, inhibition studies and, experiments in expressed CYPs and UGTs revealed that the CYP2C9 and CYP2C8 are comparably involved in the formation of montelukast 1,2- diol. CYP3A4 was responsible for the formation of 21(R)-OH montelukast and 21(S)- OH montelukast, while multiple CYPs catalyzed the formation of 25-OH montelukast (CYP2C8>2C9>3A4>2C19). The direct glucuronidation of montelukast resulted in the formation of montelukast acyl-β-D-glucuronide and of a new metabolite (Mglucuronide) not reported previously and was exclusively catalyzed by isoform UGT1A3. In conclusion, the in vitro data suggest that the applicability of montelukast as a probe of CYP2C8 activity in vitro and in vivo may be severely compromised due to important role of UGT1A3 and involvement of multiple CYPs in its metabolism. In addition, considering the lack of selective markers for UGT1A3, montelukast may be used as a selective marker of the UGT1A3 in vitro and in vivo.
id SCAR_99efdeca7b2bb89b5cecc34cc4f43b4c
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7718
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Cardoso, Josiane de OliveiraOliveira, Regina Vincenzihttp://lattes.cnpq.br/6609377714413073Venâncio, Tiagohttp://lattes.cnpq.br/4438399441102990http://lattes.cnpq.br/77261907765960022016-10-10T14:07:49Z2016-10-10T14:07:49Z2015-08-25CARDOSO, Josiane de Oliveira. Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática. 2015. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7718.https://repositorio.ufscar.br/handle/ufscar/7718This work reports studies of in vitro metabolism involving the compound 3-(2-chloro-6-fluorobenzyl)- imidazolidine-2,4-dione (LPSF-PT-31), a new 2-adrenoceptor agonist and, studies of enzyme phenotyping of montelukast, a drug used for the treatment of asthma. The results of this study revealed that LPSF-PT-31 is metabolized via CYP P450s in rat and human liver microsomes, producing only one major hydroxy-metabolite. LPSFPT- 31 showed a higher rate of in vitro metabolism in rats, which suggests a greater exposure to the drug in humans. The structural identification of LPSF-PT-31 metabolite’s was achieved through LC-MSn and 1H-NMR analysis that provided data to conclude that the hydroxylation occurred in the 5th position of the imidazolidine ring yielding to the production of 3-(2-chloro-6-fluorobenzyl)-5-hydroxyimidazolidine-2,4- dione. Related to the studies of enzyme phenotyping of montelukast, it was observed that the glucuronidation is the main clearance pathway of montelukast accounting for ~85% of the total apparent in vitro Clint (CYPs +UGTs) and that the CYP-mediated oxidation accounts only for ~15% to the overall metabolism of the drug, being montelukast acyl-β-D-glucuronide and montelukast 1,2 diol the major metabolites formed via UGTs and CYPs, respectively. Kinetic studies, correlation analysis, inhibition studies and, experiments in expressed CYPs and UGTs revealed that the CYP2C9 and CYP2C8 are comparably involved in the formation of montelukast 1,2- diol. CYP3A4 was responsible for the formation of 21(R)-OH montelukast and 21(S)- OH montelukast, while multiple CYPs catalyzed the formation of 25-OH montelukast (CYP2C8>2C9>3A4>2C19). The direct glucuronidation of montelukast resulted in the formation of montelukast acyl-β-D-glucuronide and of a new metabolite (Mglucuronide) not reported previously and was exclusively catalyzed by isoform UGT1A3. In conclusion, the in vitro data suggest that the applicability of montelukast as a probe of CYP2C8 activity in vitro and in vivo may be severely compromised due to important role of UGT1A3 and involvement of multiple CYPs in its metabolism. In addition, considering the lack of selective markers for UGT1A3, montelukast may be used as a selective marker of the UGT1A3 in vitro and in vivo.Este trabalho relata estudos de metabolismo in vitro envolvendo o composto 3-(2-cloro-6- fluorobenzil)-imidazolidina-2,4-diona (LPSF-PT-31), um novo agonista adrenérgico 2A, e estudos de fenotipagem enzimática do montelucaste, fármaco utilizado no tratamento da asma. Os resultados do presente estudo revelaram que LPSF-PT-31 é metabolizado via CYP P450s em microssomas de fígado de ratos e humanos, produzindo apenas um hidroxi-metabólito principal. LPSF-PT-31 apresentou uma maior taxa de metabolismo in vitro em ratos, o que sugere uma maior exposição ao fármaco em seres humanos. A identificação estrutural do metabólito do LPSF-PT-31 foi estabelecida através de análises por LC-MSn e 1H-RMN, o que indicou que a reação de hidroxilação ocorreu na posição 5 do anel da imidazolidina levando a produção do metabólito 3-(2-cloro-6-fluorobenzil)-5-hidroxi-imidazolidina-2,4-diona. Em relação aos estudos de fenotipagem enzimática do montelucaste foi observado que a glucuronidação é o principal mecanismo de eliminação deste fármaco, representando ~85% do Clint in vitro aparente total (CYPs +UGTs) e que a oxidação via CYPs representa somente ~15% do Clint in vitro, sendo os metabólitos majoritários formados via UGTs e CYPs o montelucaste acil-β-D-glucuronídeo e o montelucaste 1,2 diol, respectivamente. Estudos cinéticos, de correlação com a atividade enzimática, de inibição e empregando CYPs e UGTs expressas indicaram que as CYP2C9 e CYP2C8 estão comparavelmente envolvidas na formação do montelucaste 1,2 diol. A CYP3A4 foi responsável pela formação dos metabólitos 21(R)-OH montelucaste e 21(S)-OH montelucaste, enquanto múltiplas CYPs catalisam a formação do 25-OH montelucaste (CYP2C8>2C9>3A4>2C19). A glucuronidação direta do montelucaste resultou na formação do montelucaste acil-β- D-glucuronídeo e de um novo metabólito (M-glucuronídeo) não reportado previamente e foi catalisada exclusivamente pela isoforma UGT1A3. Deste modo, os dados in vitro sugerem que a aplicabilidade do montelucaste como marcador da CYP2C8 in vitro e in vivo pode ser severamente comprometida devido ao importante papel da UGT1A3 e o envolvimento de múltiplas CYPs no seu metabolismo. Ainda, considerando a falta de marcadores seletivos para a UGT1A3, montelucaste pode ser utilizado como um marcador seletivo da UGT1A3 in vivo e in vitro.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarMetabolismo in vitroIdentificação estruturalLC-MSRMNFenotipagem enzimáticaCIENCIAS EXATAS E DA TERRA::QUIMICAIdentificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimáticaStructural identification of metabolites from in vitro metabolism of bioactive compounds and studies of enzymatic phenotypinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnlineinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseJOC.pdfTeseJOC.pdfapplication/pdf3485823https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7718/1/TeseJOC.pdf6f1dbfbe709a908e9ec5667584683225MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7718/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseJOC.pdf.txtTeseJOC.pdf.txtExtracted texttext/plain287071https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7718/3/TeseJOC.pdf.txt39dada4828f41b8d2bcea87d38cf2eccMD53THUMBNAILTeseJOC.pdf.jpgTeseJOC.pdf.jpgIM Thumbnailimage/jpeg10174https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7718/4/TeseJOC.pdf.jpg2c6541e56c39f0462b2d5f83a7ff55a6MD54ufscar/77182019-09-11 02:21:59.208oai:repositorio.ufscar.br:ufscar/7718TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T12:52:58.633798Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática
dc.title.alternative.eng.fl_str_mv Structural identification of metabolites from in vitro metabolism of bioactive compounds and studies of enzymatic phenotyping
title Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática
spellingShingle Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática
Cardoso, Josiane de Oliveira
Metabolismo in vitro
Identificação estrutural
LC-MS
RMN
Fenotipagem enzimática
CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática
title_full Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática
title_fullStr Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática
title_full_unstemmed Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática
title_sort Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática
author Cardoso, Josiane de Oliveira
author_facet Cardoso, Josiane de Oliveira
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/7726190776596002
dc.contributor.author.fl_str_mv Cardoso, Josiane de Oliveira
dc.contributor.advisor1.fl_str_mv Oliveira, Regina Vincenzi
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6609377714413073
dc.contributor.advisor-co1.fl_str_mv Venâncio, Tiago
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4438399441102990
contributor_str_mv Oliveira, Regina Vincenzi
Venâncio, Tiago
dc.subject.por.fl_str_mv Metabolismo in vitro
Identificação estrutural
LC-MS
RMN
Fenotipagem enzimática
topic Metabolismo in vitro
Identificação estrutural
LC-MS
RMN
Fenotipagem enzimática
CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA
description This work reports studies of in vitro metabolism involving the compound 3-(2-chloro-6-fluorobenzyl)- imidazolidine-2,4-dione (LPSF-PT-31), a new 2-adrenoceptor agonist and, studies of enzyme phenotyping of montelukast, a drug used for the treatment of asthma. The results of this study revealed that LPSF-PT-31 is metabolized via CYP P450s in rat and human liver microsomes, producing only one major hydroxy-metabolite. LPSFPT- 31 showed a higher rate of in vitro metabolism in rats, which suggests a greater exposure to the drug in humans. The structural identification of LPSF-PT-31 metabolite’s was achieved through LC-MSn and 1H-NMR analysis that provided data to conclude that the hydroxylation occurred in the 5th position of the imidazolidine ring yielding to the production of 3-(2-chloro-6-fluorobenzyl)-5-hydroxyimidazolidine-2,4- dione. Related to the studies of enzyme phenotyping of montelukast, it was observed that the glucuronidation is the main clearance pathway of montelukast accounting for ~85% of the total apparent in vitro Clint (CYPs +UGTs) and that the CYP-mediated oxidation accounts only for ~15% to the overall metabolism of the drug, being montelukast acyl-β-D-glucuronide and montelukast 1,2 diol the major metabolites formed via UGTs and CYPs, respectively. Kinetic studies, correlation analysis, inhibition studies and, experiments in expressed CYPs and UGTs revealed that the CYP2C9 and CYP2C8 are comparably involved in the formation of montelukast 1,2- diol. CYP3A4 was responsible for the formation of 21(R)-OH montelukast and 21(S)- OH montelukast, while multiple CYPs catalyzed the formation of 25-OH montelukast (CYP2C8>2C9>3A4>2C19). The direct glucuronidation of montelukast resulted in the formation of montelukast acyl-β-D-glucuronide and of a new metabolite (Mglucuronide) not reported previously and was exclusively catalyzed by isoform UGT1A3. In conclusion, the in vitro data suggest that the applicability of montelukast as a probe of CYP2C8 activity in vitro and in vivo may be severely compromised due to important role of UGT1A3 and involvement of multiple CYPs in its metabolism. In addition, considering the lack of selective markers for UGT1A3, montelukast may be used as a selective marker of the UGT1A3 in vitro and in vivo.
publishDate 2015
dc.date.issued.fl_str_mv 2015-08-25
dc.date.accessioned.fl_str_mv 2016-10-10T14:07:49Z
dc.date.available.fl_str_mv 2016-10-10T14:07:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARDOSO, Josiane de Oliveira. Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática. 2015. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7718.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7718
identifier_str_mv CARDOSO, Josiane de Oliveira. Identificação estrutural de metabólitos provenientes do metabolismo in vitro de compostos bioativos e estudos de fenotipagem enzimática. 2015. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7718.
url https://repositorio.ufscar.br/handle/ufscar/7718
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química - PPGQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7718/1/TeseJOC.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7718/2/license.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7718/3/TeseJOC.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7718/4/TeseJOC.pdf.jpg
bitstream.checksum.fl_str_mv 6f1dbfbe709a908e9ec5667584683225
ae0398b6f8b235e40ad82cba6c50031d
39dada4828f41b8d2bcea87d38cf2ecc
2c6541e56c39f0462b2d5f83a7ff55a6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351110779011072