Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Singh, Harminder
Orientador(a): Suazo, Cláudio Alberto Torres lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química - PPGEQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
DNS
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/7303
Resumo: Taylor-Vortex reactor (TVB) is fast becoming the next bioreactor to culture animal cells due to milder shear and homogeneous flow structures through-out the bioreactor in comparison to the traditional stirred vessels. However, there is little information in the literature for the TVB on the viscous energy dissipation rate (VEDR), which is considered the ideal parameter to characterize the cell death, and its geometrical aspects, which may affect the culture of animal cells resulting in poor efficiency. Consequently, this work focuses on: the estimation of the VEDR of mean flow and turbulent kinetic energy (TKE) using an experimental 2D particle image velocimetry (PIV) method and a computational fluid dynamics (CFD) method using different turbulence models, principally the direct numerical simulation (DNS) model; and, the impact of the off-bottom clearance area and the external cylinder’s bottom shape on the flow structures of TVB. Both numerical and experimental methods confirm that the bulk zone comprising of the 80 % of the gap-width, where the cell cultures will spend most of the time, has a near constant velocity magnitude of around 50 % of the tip velocity and VEDR values which are around 10 times lower than at the walls. Qualitatively, the DNS model predicted well the flow structure of both mean and turbulence parameters in comparison with the experimental PIV predictions. However, quantitatively only the mean velocity predictions are in good agreement with the PIV data with certain amount of under-estimation of the turbulence parameters. Among different turbulence models, the large eddy simulation (LES) - wall adapting local eddy-viscosity (WALE) model presented best comparison with the DNS model data for all the flow parameters; while, the Reynolds stress model and the LES-Smagorinsky models were the poorest. On the other hand, the Reynolds averaged Navier-Stokes (RANS) based two equation models estimated well the mean velocity components in comparison with the DNS model data, but could not capture well the flow structures of the turbulence components. The geometrical features of curved surface of outer bottom and off-bottom clearance area which are of practical importance in stirred vessels, impact adversely the flow structures in the TVB due to poor axial velocity component. In comparison with the spinner vessel, a stirred tank type bioeactor but with lower shear, for similar Re/ReT ratio, the maximum and mean VEDR were always found to be of lower magnitude values, and due to much less difference between the maximum and the mean values, the TVB presents more uniform structures in comparison to the spinner vessel.
id SCAR_a60f9a35016e86acd8a0365a06d8a7f7
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7303
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Singh, HarminderSuazo, Cláudio Alberto Torreshttp://lattes.cnpq.br/9591447226240450http://lattes.cnpq.br/59202528135535672016-09-21T12:29:53Z2016-09-21T12:29:53Z2016-03-28SINGH, Harminder. Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor. 2016. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7303.https://repositorio.ufscar.br/handle/ufscar/7303Taylor-Vortex reactor (TVB) is fast becoming the next bioreactor to culture animal cells due to milder shear and homogeneous flow structures through-out the bioreactor in comparison to the traditional stirred vessels. However, there is little information in the literature for the TVB on the viscous energy dissipation rate (VEDR), which is considered the ideal parameter to characterize the cell death, and its geometrical aspects, which may affect the culture of animal cells resulting in poor efficiency. Consequently, this work focuses on: the estimation of the VEDR of mean flow and turbulent kinetic energy (TKE) using an experimental 2D particle image velocimetry (PIV) method and a computational fluid dynamics (CFD) method using different turbulence models, principally the direct numerical simulation (DNS) model; and, the impact of the off-bottom clearance area and the external cylinder’s bottom shape on the flow structures of TVB. Both numerical and experimental methods confirm that the bulk zone comprising of the 80 % of the gap-width, where the cell cultures will spend most of the time, has a near constant velocity magnitude of around 50 % of the tip velocity and VEDR values which are around 10 times lower than at the walls. Qualitatively, the DNS model predicted well the flow structure of both mean and turbulence parameters in comparison with the experimental PIV predictions. However, quantitatively only the mean velocity predictions are in good agreement with the PIV data with certain amount of under-estimation of the turbulence parameters. Among different turbulence models, the large eddy simulation (LES) - wall adapting local eddy-viscosity (WALE) model presented best comparison with the DNS model data for all the flow parameters; while, the Reynolds stress model and the LES-Smagorinsky models were the poorest. On the other hand, the Reynolds averaged Navier-Stokes (RANS) based two equation models estimated well the mean velocity components in comparison with the DNS model data, but could not capture well the flow structures of the turbulence components. The geometrical features of curved surface of outer bottom and off-bottom clearance area which are of practical importance in stirred vessels, impact adversely the flow structures in the TVB due to poor axial velocity component. In comparison with the spinner vessel, a stirred tank type bioeactor but with lower shear, for similar Re/ReT ratio, the maximum and mean VEDR were always found to be of lower magnitude values, and due to much less difference between the maximum and the mean values, the TVB presents more uniform structures in comparison to the spinner vessel.O biorreator de Vórtices de Taylor (TVB) está se tornando uma nova descoberta, devido ao seu cisalhamento mais suave e fluxo homogêneo em comparações com os biorreatores de tanque agitados. Na literatura acadêmica há pouca informação sobre este biorreator quanto a taxa de dissipação de energia viscosa (VEDR), que é o parâmetro ideal para caracterizar a morte celular, e seus aspectos geométricos, que afetam o cultivo das células animais, resultando em baixa eficiência. A presente pesquisa, portanto, objetivou focar na estimativa da VEDR de fluxo médio e de energia cinética turbulenta (TKE) no TVB usando os métodos: experimental de 2D de velocimetria das partículas por imagem (PIV) e numérico de dinâmica de fluídos computacional (CFD) com diferentes modelos de turbulência, principalmente a simulação numérica direta (DNS). E focar nos aspectos geométricos do impacto da área de apuramento entre o cilindro interno e externo e na forma da base do cilindro externo na estrutura de fluxo do TVB. Os dois métodos experimental e numérico demonstraram que, em aproximadamente 80 % da área lateral entre os cilindros interno e externo onde as células vão passar a maior parte do tempo, a magnitude de velocidade é de cerca de 50 % da máxima e os valores de VEDR são 10 vezes menores do que nas paredes. Qualitativamente, o DNS mostrou boas comparações dos fluxos médios e dos parâmetros turbulentos em relação aos resultados apresentados pelo PIV para o TVB. No entanto, quantitativamente, apenas as previsões médias de velocidade estão em boa concordância com os dados do PIV, pois os parâmetros turbulentos foram sub-estimados. Entre os diferentes modelos de turbulência utilizados, o modelo simulação de grande escala (LES) - Wall Adapting Local Eddy-Viscosity apresentou a melhor comparação com os dados do DNS para todos os parâmetros do fluxo. O modelo de estresse Reynolds e LES - Smagorinsky, por sua vez, apresentaram as piores comparações. Os modelos de duas equações de RANS, entretanto, apesar de estimarem bem os componentes de velocidade média em comparação com os dados do modelo DNS, não captaram bem as estruturas de fluxo dos componentes de turbulência. Quanto aos aspectos geométricos, as alterações nas características da área de apuramento entre o cilindro interno e externo e a estrutura curva da base do cilindro externo, que são de importância prática em tanque agitados, neste estudo, afetaram negativamente o fluxo no TVB devido ao seu baixo componente de velocidade axial. Por fim, a comparação entre o TVB e o Spinner Flask, considerado também um biorreator com baixo cisalhamento, demostrou que para Re/ReT semelhante, os valores máximo e médio do VEDR foram sempre inferiores, e devido à diferença muito menor entre o os valores máximo e médio, o TVB apresenta estruturas mais uniformes em comparação com o Spinner Flask.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)processo nº 140756/2012-4 ; processo nº - 241739/2012-8)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarDNSLES-WALERANSViscous energy dissipation rateTurbulenceDissipação de energia viscosaTurbulênciaENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICAParticle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnlineinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseHS.pdfTeseHS.pdfapplication/pdf6507848https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7303/1/TeseHS.pdf467139021a2d6e49272a3197b75c3216MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7303/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseHS.pdf.txtTeseHS.pdf.txtExtracted texttext/plain334419https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7303/3/TeseHS.pdf.txt9f7df72aa0c179d4d850e450c6482e3cMD53THUMBNAILTeseHS.pdf.jpgTeseHS.pdf.jpgIM Thumbnailimage/jpeg8110https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7303/4/TeseHS.pdf.jpgd1f9e5d1e541a8caa6c15f93cc796fb9MD54ufscar/73032019-09-11 03:52:23.291oai:repositorio.ufscar.br:ufscar/7303TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T12:52:22.330696Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor
title Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor
spellingShingle Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor
Singh, Harminder
DNS
LES-WALE
RANS
Viscous energy dissipation rate
Turbulence
Dissipação de energia viscosa
Turbulência
ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA
title_short Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor
title_full Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor
title_fullStr Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor
title_full_unstemmed Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor
title_sort Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor
author Singh, Harminder
author_facet Singh, Harminder
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5920252813553567
dc.contributor.author.fl_str_mv Singh, Harminder
dc.contributor.advisor1.fl_str_mv Suazo, Cláudio Alberto Torres
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9591447226240450
contributor_str_mv Suazo, Cláudio Alberto Torres
dc.subject.eng.fl_str_mv DNS
LES-WALE
RANS
Viscous energy dissipation rate
Turbulence
topic DNS
LES-WALE
RANS
Viscous energy dissipation rate
Turbulence
Dissipação de energia viscosa
Turbulência
ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA
dc.subject.por.fl_str_mv Dissipação de energia viscosa
Turbulência
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA
description Taylor-Vortex reactor (TVB) is fast becoming the next bioreactor to culture animal cells due to milder shear and homogeneous flow structures through-out the bioreactor in comparison to the traditional stirred vessels. However, there is little information in the literature for the TVB on the viscous energy dissipation rate (VEDR), which is considered the ideal parameter to characterize the cell death, and its geometrical aspects, which may affect the culture of animal cells resulting in poor efficiency. Consequently, this work focuses on: the estimation of the VEDR of mean flow and turbulent kinetic energy (TKE) using an experimental 2D particle image velocimetry (PIV) method and a computational fluid dynamics (CFD) method using different turbulence models, principally the direct numerical simulation (DNS) model; and, the impact of the off-bottom clearance area and the external cylinder’s bottom shape on the flow structures of TVB. Both numerical and experimental methods confirm that the bulk zone comprising of the 80 % of the gap-width, where the cell cultures will spend most of the time, has a near constant velocity magnitude of around 50 % of the tip velocity and VEDR values which are around 10 times lower than at the walls. Qualitatively, the DNS model predicted well the flow structure of both mean and turbulence parameters in comparison with the experimental PIV predictions. However, quantitatively only the mean velocity predictions are in good agreement with the PIV data with certain amount of under-estimation of the turbulence parameters. Among different turbulence models, the large eddy simulation (LES) - wall adapting local eddy-viscosity (WALE) model presented best comparison with the DNS model data for all the flow parameters; while, the Reynolds stress model and the LES-Smagorinsky models were the poorest. On the other hand, the Reynolds averaged Navier-Stokes (RANS) based two equation models estimated well the mean velocity components in comparison with the DNS model data, but could not capture well the flow structures of the turbulence components. The geometrical features of curved surface of outer bottom and off-bottom clearance area which are of practical importance in stirred vessels, impact adversely the flow structures in the TVB due to poor axial velocity component. In comparison with the spinner vessel, a stirred tank type bioeactor but with lower shear, for similar Re/ReT ratio, the maximum and mean VEDR were always found to be of lower magnitude values, and due to much less difference between the maximum and the mean values, the TVB presents more uniform structures in comparison to the spinner vessel.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-09-21T12:29:53Z
dc.date.available.fl_str_mv 2016-09-21T12:29:53Z
dc.date.issued.fl_str_mv 2016-03-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SINGH, Harminder. Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor. 2016. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7303.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7303
identifier_str_mv SINGH, Harminder. Particle image velocimetry and computational fluid dynamics applied to study the effect of hydrodynamics forces on animal cells cultivated in Taylor vortex bioreactor. 2016. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7303.
url https://repositorio.ufscar.br/handle/ufscar/7303
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7303/1/TeseHS.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7303/2/license.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7303/3/TeseHS.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7303/4/TeseHS.pdf.jpg
bitstream.checksum.fl_str_mv 467139021a2d6e49272a3197b75c3216
ae0398b6f8b235e40ad82cba6c50031d
9f7df72aa0c179d4d850e450c6482e3c
d1f9e5d1e541a8caa6c15f93cc796fb9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351105439662080