Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Coutinho, Thamara Carvalho
Orientador(a): Farinas, Cristiane Sanchez lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química - PPGEQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/12468
Resumo: Industrial processes are increasingly requiring environmentally sustainable technologies and the use of enzymes is relevant due to the selectivity and specificity of these biocatalysts. However, the application of soluble enzymes in catalytic processes is often impracticable due to the high cost of these biocatalysts and the catalytic instability under severe physical-chemical process conditions. In this sense, the immobilization of enzymes guarantees the reuse of these biomolecules and often improves their stability. Among the supports used as immobilizing agents, nanoparticles have been increasingly studied due to the possibility of creating structures with high surface area to adsorb proteins and also to demonstrate low resistance to mass transfer, thus ensuring good accessibility of the catalyst to the substrate. Hydroxyapatite (HA) is a solid inorganic potential for immobilizing enzymes, since it is non-toxic, has good chemical and physical resistance, good ability to interact with proteins and can be synthesized in the form of nanoparticles; however, it has been little explored as a support for enzymatic immobilization. Given this context, the objective of this research was to evaluate the immobilization of the enzymes β-glucosidase, xylanase and phytase on hydroxyapatite nanoparticles (HA), as a strategy to improve the catalytic efficiency and stability of these enzymes. These enzymes have wide application in different sectors of the agribusiness, such as biofuels, food, animal feed and drugs. For this, HA nanoparticles were first characterized in order to understand their composition, size, morphology and surface area. Then, a systematic study of the immobilization of these enzymes in HA was carried out. The biochemical aspects of enzymatic immobilization were investigated, such as the physicochemical conditions of adsorption and desorption, that helps to understand the type of chemical interaction between support and enzyme. Changes in enzymatic activity profile, thermo-stability, conversion capacity during enzymatic hydrolysis and reuse of these biomolecules were also evaluated. The results obtained showed that the β-glucosidase, phytase and xylanase enzymes were efficiently immobilized on the HA nanoparticles using a simple and fast adsorption protocol, which occur mainly through coordination interactions between the Ca2+ sites of the HA with the carboxylic acids (COO-) of the enzyme amino acids. The biochemical behavior of the enzymes in the presence of HA was evaluated under different physicochemical conditions of adsorption and desorption (pH and ionic strength), indicating a strong and highly stable interaction between enzymes and support, with immobilization yields close to 100% and recovered activities in the range of 70-100%. For β-glucosidase it was possible to recycle the immobilized enzyme and retain 70% of the initial activity during at least 10 hydrolysis cycles. For phytase, the immobilized enzyme showed broader activity profile as to pH and temperature, and higher stability at high temperatures than free enzyme, whose improvement in its properties suggested the potential of applying the immobilized form of phytase in animal feed. For xylanase, the immobilized enzyme demonstrated greater affinity for the HA support that was modified with Cu2+ ions, promoting chelation interaction with enzyme amino acids, generating derivatives with maintenance of their catalytic activity and with activity profile similar to that of the free enzyme. Finally, the three enzymes were immobilized on HA magnetic nanoparticles (synthesized with cobalt ferrite, CoFe2O4), demonstrating excellent recovery capacity from the reaction medium through the application of a magnetic field. The results obtained showed the potential of HA to act as a support for enzyme immobilization, creating derivatives with promising industrial applications, which can improve processes and make them more sustainable.
id SCAR_b1b764a835c027185a7ce26ce7dfb249
oai_identifier_str oai:repositorio.ufscar.br:ufscar/12468
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Coutinho, Thamara CarvalhoFarinas, Cristiane Sanchezhttp://lattes.cnpq.br/9933650905615452http://lattes.cnpq.br/51535353776257552020-04-24T14:01:12Z2020-04-24T14:01:12Z2020-03-10COUTINHO, Thamara Carvalho. Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase. 2020. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12468.https://repositorio.ufscar.br/handle/ufscar/12468Industrial processes are increasingly requiring environmentally sustainable technologies and the use of enzymes is relevant due to the selectivity and specificity of these biocatalysts. However, the application of soluble enzymes in catalytic processes is often impracticable due to the high cost of these biocatalysts and the catalytic instability under severe physical-chemical process conditions. In this sense, the immobilization of enzymes guarantees the reuse of these biomolecules and often improves their stability. Among the supports used as immobilizing agents, nanoparticles have been increasingly studied due to the possibility of creating structures with high surface area to adsorb proteins and also to demonstrate low resistance to mass transfer, thus ensuring good accessibility of the catalyst to the substrate. Hydroxyapatite (HA) is a solid inorganic potential for immobilizing enzymes, since it is non-toxic, has good chemical and physical resistance, good ability to interact with proteins and can be synthesized in the form of nanoparticles; however, it has been little explored as a support for enzymatic immobilization. Given this context, the objective of this research was to evaluate the immobilization of the enzymes β-glucosidase, xylanase and phytase on hydroxyapatite nanoparticles (HA), as a strategy to improve the catalytic efficiency and stability of these enzymes. These enzymes have wide application in different sectors of the agribusiness, such as biofuels, food, animal feed and drugs. For this, HA nanoparticles were first characterized in order to understand their composition, size, morphology and surface area. Then, a systematic study of the immobilization of these enzymes in HA was carried out. The biochemical aspects of enzymatic immobilization were investigated, such as the physicochemical conditions of adsorption and desorption, that helps to understand the type of chemical interaction between support and enzyme. Changes in enzymatic activity profile, thermo-stability, conversion capacity during enzymatic hydrolysis and reuse of these biomolecules were also evaluated. The results obtained showed that the β-glucosidase, phytase and xylanase enzymes were efficiently immobilized on the HA nanoparticles using a simple and fast adsorption protocol, which occur mainly through coordination interactions between the Ca2+ sites of the HA with the carboxylic acids (COO-) of the enzyme amino acids. The biochemical behavior of the enzymes in the presence of HA was evaluated under different physicochemical conditions of adsorption and desorption (pH and ionic strength), indicating a strong and highly stable interaction between enzymes and support, with immobilization yields close to 100% and recovered activities in the range of 70-100%. For β-glucosidase it was possible to recycle the immobilized enzyme and retain 70% of the initial activity during at least 10 hydrolysis cycles. For phytase, the immobilized enzyme showed broader activity profile as to pH and temperature, and higher stability at high temperatures than free enzyme, whose improvement in its properties suggested the potential of applying the immobilized form of phytase in animal feed. For xylanase, the immobilized enzyme demonstrated greater affinity for the HA support that was modified with Cu2+ ions, promoting chelation interaction with enzyme amino acids, generating derivatives with maintenance of their catalytic activity and with activity profile similar to that of the free enzyme. Finally, the three enzymes were immobilized on HA magnetic nanoparticles (synthesized with cobalt ferrite, CoFe2O4), demonstrating excellent recovery capacity from the reaction medium through the application of a magnetic field. The results obtained showed the potential of HA to act as a support for enzyme immobilization, creating derivatives with promising industrial applications, which can improve processes and make them more sustainable.Processos industriais requerem cada vez mais a aplicação de tecnologias ambientalmente sustentáveis e o uso de enzimas se destaca devido à seletividade e especificidade desses biocatalisadores. Contudo, a aplicação de enzimas solúveis em processos catalíticos torna-se muitas vezes inviável devido ao alto custo desses biocatalisadores e a instabilidade catalítica em condições físico-químicas severas de processo. Nesse sentido, a imobilização de enzimas garante o reaproveitamento dessas biomoléculas e muitas vezes, o ganho de estabilidade. Dentre os suportes utilizados para imobilização de enzimas, as nanopartículas têm-se mostrado bastante atraentes devido à elevada área superficial específica e baixa resistência à transferência de massa, garantindo alta capacidade de imobilização enzimas e boa acessibilidade do substrato ao catalisador. A hidroxiapatita (HA) é um potencial sólido inorgânico para imobilização de enzimas, uma vez que não é tóxico, apresenta boa resistência química e física, boa capacidade de interação com proteínas e ainda pode ser sintetizada na forma de nanopartículas; contudo tem sido pouco explorada como suporte para imobilização enzimática. O objetivo deste projeto de doutorado foi avaliar a imobilização das enzimas β-glicosidase, xilanase e fitase em nanopartículas de HA, a fim de obter derivados mais interessantes para serem aplicados na indústria. Essas enzimas têm vasta aplicação em diferentes setores da agroindústria, como de biocombustíveis, de alimentos, de ração animal e de fármacos. Para isso, as nanopartículas de HA foram primeiramente caracterizadas com o objetivo de compreender sua composição, tamanho, morfologia e área de superfície. Em seguida, realizou-se um estudo sistemático da imobilização dessas enzimas em HA, avaliando os aspectos bioquímicos da imobilização, como as condições físico-químicas de adsorção e dessorção, que ajudaram a compreender o tipo de interação química entre suporte e enzima; alterações no perfil de atividade enzimática; melhora na estabilidade térmica; capacidade de hidrólise enzimática e reutilização dessas biomoléculas. Os resultados obtidos mostraram que as enzimas β-glicosidase, fitase e xilanase foram eficientemente imobilizadas nas nanopartículas de HA através de um protocolo de adsorção simples e rápido, principalmente através de interações de coordenação entre os sítios de Ca2+ da HA com os ácidos carboxílicos (COO-) dos aminoácidos das enzimas. Foi avaliado o comportamento bioquímico das enzimas com a HA em diferentes condições físico-químicas de adsorção e dessorção (pH e força iônica), indicando uma interação forte e altamente estável entre enzimas e suporte, com rendimentos de imobilização próximos a 100% e atividades recuperadas na faixa de 70-100%. A β-glicosidase imobilizada em HA reteve até 70% de sua atividade catalítica após 10 ciclos de hidrólise, demonstrando alta capacidade de reuso. Já a fitase imobilizada apresentou maior atuação em ampla faixa de pH e temperatura, e maior termoestabilidade a 80 e 90 °C do que a enzima livre, demonstrando propriedades de interesse para aplicação em ração animal. A xilanase demonstrou maior afinidade pelo suporte de HA modificado com íons de Cu2+, os quais promoveram quelação com aminoácidos da enzima, gerando derivados com manutenção de sua atividade catalítica e perfil de atividade semelhante ao da enzima livre. Por fim, as três enzimas foram imobilizadas em nanopartículas magnéticas de HA (sintetizadas com ferrita de cobalto, CoFe2O4), demonstrando excelente capacidade de recuperação desses biocatalisadores do meio reacional através da aplicação de um campo magnético. Os resultados obtidos mostraram o potencial da HA para atuar como suporte para imobilização de enzimas, gerando derivados enzimáticos com aplicações promissoras na indústria, que podem melhorar os processos e torná-los mais sustentáveis.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: código de financiamento - 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessimobilizaçãoenzimasnanopartículashidroxiapatitaImmobilizationEnzymesNanoparticlesHydroxyapatiteENGENHARIAS::ENGENHARIA QUIMICAImmobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytaseImobilização de enzimas de interesse agroindustrial em nanopartículas de hidroxiapatita: β-glicosidase, xilanase e fitaseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese de Doutorado correções pós defesa.pdfTese de Doutorado correções pós defesa.pdfTese Finalapplication/pdf4935409https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/1/Tese%20de%20Doutorado%20corre%c3%a7%c3%b5es%20p%c3%b3s%20defesa.pdf798d3903fee7f3700301348404e4aca5MD51Carta Cristiane.pdfCarta Cristiane.pdfCarta comprovante orientadorapplication/pdf248610https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/2/Carta%20Cristiane.pdfa763fc80d85502eea6748bdbef0a3fc9MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTTese de Doutorado correções pós defesa.pdf.txtTese de Doutorado correções pós defesa.pdf.txtExtracted texttext/plain348090https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/5/Tese%20de%20Doutorado%20corre%c3%a7%c3%b5es%20p%c3%b3s%20defesa.pdf.txt2e76323ec201f520d5ad9cd3ace5c54cMD55Carta Cristiane.pdf.txtCarta Cristiane.pdf.txtExtracted texttext/plain1https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/7/Carta%20Cristiane.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD57THUMBNAILTese de Doutorado correções pós defesa.pdf.jpgTese de Doutorado correções pós defesa.pdf.jpgIM Thumbnailimage/jpeg10619https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/6/Tese%20de%20Doutorado%20corre%c3%a7%c3%b5es%20p%c3%b3s%20defesa.pdf.jpg8dde2acb7b0e2508e11a711b4979baeaMD56Carta Cristiane.pdf.jpgCarta Cristiane.pdf.jpgIM Thumbnailimage/jpeg10886https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/8/Carta%20Cristiane.pdf.jpg35e3f2b5040bff7982895cf4898d1c74MD58ufscar/124682020-07-08 21:58:10.899oai:repositorio.ufscar.br:ufscar/12468Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T12:58:57.641988Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase
dc.title.alternative.por.fl_str_mv Imobilização de enzimas de interesse agroindustrial em nanopartículas de hidroxiapatita: β-glicosidase, xilanase e fitase
title Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase
spellingShingle Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase
Coutinho, Thamara Carvalho
imobilização
enzimas
nanopartículas
hidroxiapatita
Immobilization
Enzymes
Nanoparticles
Hydroxyapatite
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase
title_full Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase
title_fullStr Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase
title_full_unstemmed Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase
title_sort Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase
author Coutinho, Thamara Carvalho
author_facet Coutinho, Thamara Carvalho
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5153535377625755
dc.contributor.author.fl_str_mv Coutinho, Thamara Carvalho
dc.contributor.advisor1.fl_str_mv Farinas, Cristiane Sanchez
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9933650905615452
contributor_str_mv Farinas, Cristiane Sanchez
dc.subject.por.fl_str_mv imobilização
enzimas
nanopartículas
hidroxiapatita
topic imobilização
enzimas
nanopartículas
hidroxiapatita
Immobilization
Enzymes
Nanoparticles
Hydroxyapatite
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Immobilization
Enzymes
Nanoparticles
Hydroxyapatite
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description Industrial processes are increasingly requiring environmentally sustainable technologies and the use of enzymes is relevant due to the selectivity and specificity of these biocatalysts. However, the application of soluble enzymes in catalytic processes is often impracticable due to the high cost of these biocatalysts and the catalytic instability under severe physical-chemical process conditions. In this sense, the immobilization of enzymes guarantees the reuse of these biomolecules and often improves their stability. Among the supports used as immobilizing agents, nanoparticles have been increasingly studied due to the possibility of creating structures with high surface area to adsorb proteins and also to demonstrate low resistance to mass transfer, thus ensuring good accessibility of the catalyst to the substrate. Hydroxyapatite (HA) is a solid inorganic potential for immobilizing enzymes, since it is non-toxic, has good chemical and physical resistance, good ability to interact with proteins and can be synthesized in the form of nanoparticles; however, it has been little explored as a support for enzymatic immobilization. Given this context, the objective of this research was to evaluate the immobilization of the enzymes β-glucosidase, xylanase and phytase on hydroxyapatite nanoparticles (HA), as a strategy to improve the catalytic efficiency and stability of these enzymes. These enzymes have wide application in different sectors of the agribusiness, such as biofuels, food, animal feed and drugs. For this, HA nanoparticles were first characterized in order to understand their composition, size, morphology and surface area. Then, a systematic study of the immobilization of these enzymes in HA was carried out. The biochemical aspects of enzymatic immobilization were investigated, such as the physicochemical conditions of adsorption and desorption, that helps to understand the type of chemical interaction between support and enzyme. Changes in enzymatic activity profile, thermo-stability, conversion capacity during enzymatic hydrolysis and reuse of these biomolecules were also evaluated. The results obtained showed that the β-glucosidase, phytase and xylanase enzymes were efficiently immobilized on the HA nanoparticles using a simple and fast adsorption protocol, which occur mainly through coordination interactions between the Ca2+ sites of the HA with the carboxylic acids (COO-) of the enzyme amino acids. The biochemical behavior of the enzymes in the presence of HA was evaluated under different physicochemical conditions of adsorption and desorption (pH and ionic strength), indicating a strong and highly stable interaction between enzymes and support, with immobilization yields close to 100% and recovered activities in the range of 70-100%. For β-glucosidase it was possible to recycle the immobilized enzyme and retain 70% of the initial activity during at least 10 hydrolysis cycles. For phytase, the immobilized enzyme showed broader activity profile as to pH and temperature, and higher stability at high temperatures than free enzyme, whose improvement in its properties suggested the potential of applying the immobilized form of phytase in animal feed. For xylanase, the immobilized enzyme demonstrated greater affinity for the HA support that was modified with Cu2+ ions, promoting chelation interaction with enzyme amino acids, generating derivatives with maintenance of their catalytic activity and with activity profile similar to that of the free enzyme. Finally, the three enzymes were immobilized on HA magnetic nanoparticles (synthesized with cobalt ferrite, CoFe2O4), demonstrating excellent recovery capacity from the reaction medium through the application of a magnetic field. The results obtained showed the potential of HA to act as a support for enzyme immobilization, creating derivatives with promising industrial applications, which can improve processes and make them more sustainable.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-04-24T14:01:12Z
dc.date.available.fl_str_mv 2020-04-24T14:01:12Z
dc.date.issued.fl_str_mv 2020-03-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COUTINHO, Thamara Carvalho. Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase. 2020. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12468.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/12468
identifier_str_mv COUTINHO, Thamara Carvalho. Immobilization of enzymes of agroindustrial interest on hydroxyapatite nanoparticles: β-glucosidase, xylase and phytase. 2020. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12468.
url https://repositorio.ufscar.br/handle/ufscar/12468
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/1/Tese%20de%20Doutorado%20corre%c3%a7%c3%b5es%20p%c3%b3s%20defesa.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/2/Carta%20Cristiane.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/4/license_rdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/5/Tese%20de%20Doutorado%20corre%c3%a7%c3%b5es%20p%c3%b3s%20defesa.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/7/Carta%20Cristiane.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/6/Tese%20de%20Doutorado%20corre%c3%a7%c3%b5es%20p%c3%b3s%20defesa.pdf.jpg
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/12468/8/Carta%20Cristiane.pdf.jpg
bitstream.checksum.fl_str_mv 798d3903fee7f3700301348404e4aca5
a763fc80d85502eea6748bdbef0a3fc9
e39d27027a6cc9cb039ad269a5db8e34
2e76323ec201f520d5ad9cd3ace5c54c
68b329da9893e34099c7d8ad5cb9c940
8dde2acb7b0e2508e11a711b4979baea
35e3f2b5040bff7982895cf4898d1c74
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351157993242624