Efeitos de spin em diodos de tunelamento ressonante tipo-p

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Galeti, Helder Vinicius Avanço
Orientador(a): Gobato, Yara Galvão lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Física - PPGF
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/4943
Resumo: In this work, we have investigated the spin effects in p-i-p GaAs/AlAs resonant tunneling diodes under magnetic field parallel to the tunnel current. The spin-dependent tunneling of carriers was studied by analyzing the current-voltage characteristics (I(V)) and the right (+) and left (-) circular polarized PL from the contact layers and the QW as a function of the applied bias. We have observed that the polarization degree from QW and contact emission is highly bias voltage sensitive. For low voltages the QW polarization exhibits strong oscillations with values up to 50% at 15 T and sign inversions for the voltages corresponding to the resonant tunneling of carriers into the well. The GaAs contact emission shows several bands including the indirect recombination between free electrons and holes localized at the 2DHG formed at the accumulation layer (2DHG-e). We have evidence that the spin polarized hole gas can contribute to the circular polarization degree of carriers in the QW. However, our results show that the circular polarization of the carriers in the QW is a complex issue which depends on various points, including the g-factors of the different layers, the spin-polarization of carriers in the contact layers, the density of carriers along the structure and the Rashba effect. The temporal evolution of the spin-polarization carriers was also investigated. We have measured the time-resolved polarized PL emission from the GaAs quantum well (QW) of a p-i-p GaAs/AlAs Resonant Tunneling Device (RTD). We have used a linearly-polarized Ti:Saphire laser and tuned below the QW absorption edge. Therefore, the electrons are created solely at the top GaAs layer and with no defined spin polarization. Under applied bias, the tunneling holes from the p-doping contact attain a quasi-stationary distribution along the RTD structure, while electrons are only photocreated during the pulse excitation with a ps Ti:Sa laser. These photogenerated electrons are driven by the applied bias and tunnel into the QW, where they might recombine with holes or tunnel out of the well. Under illumination, the current-voltage characteristics of the device present two additional features attributed, respectively, to resonant and -X electron tunneling. Optical measurements for biases where these two alternative transport mechanisms have competitive probabilities revealed an unusual carrier dynamics. The quantum well emission is strongly delayed and we observe a remarkable nonlinear effect where the emission intensity decreases at the arrival of a laser pulse. We propose a simple model that adequately describes our results where we assume that the indirect transition rate depends on the density of electrons accumulated along the structure. Under magnetic field, the PL transients reveal two rather distinct time constants, a short time ( ~ 1 ns) and a long one, which is longer than the laser repetition time (> 12 ns). The bi-exponential behavior indicates additional electron-tunneling processes, which may be associated to indirect tunneling through X-AlAs levels and tunneling of hot vs quasiequilibrium carriers at the accumulation layer. Immediately after the laser pulse, while the faster tunneling process dominates, the QW emission shows a rather small polarization. As the faster tunneling process dies out, the polarization increases to a value that remains approximately constant along the whole transient. This result demonstrates that electrons tunneling through these two distinct processes should present different spin-polarization values. We have also observed that at low biases, around to the expected -X resonance , the QW polarization is very sensitive to the excitation intensity, showing a signal inversion as a function the laser intensity. We attribute this effect to a critical dependence of the electron polarization on the occupation of the various levels involved on the process. Furthermore, at large biases, the long decay component almost disappears for low-excitation conditions and show an unusual time-dependent polarization behavior under high-excitation regime. For the analysis of this complex dynamics, we have also considered the process of tunneling out of the QW, which should become more effective, competing with the radiactive recombination process under high bias voltages. Finally, our results reveal new insights on the mechanisms that determine the spin-polarization of carriers tunneling through a doublebarrier structure and can be explored to develop spin-filter devices based on a RTD structure.
id SCAR_b789e183895a56208f0c84c51f8070c9
oai_identifier_str oai:repositorio.ufscar.br:ufscar/4943
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Galeti, Helder Vinicius AvançoGobato, Yara Galvãohttp://lattes.cnpq.br/7558531056409406http://lattes.cnpq.br/38767526053132882016-06-02T20:15:25Z2012-09-212016-06-02T20:15:25Z2012-03-27GALETI, Helder Vinicius Avanço. Efeitos de spin em diodos de tunelamento ressonante tipo-p. 2012. 123 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.https://repositorio.ufscar.br/handle/ufscar/4943In this work, we have investigated the spin effects in p-i-p GaAs/AlAs resonant tunneling diodes under magnetic field parallel to the tunnel current. The spin-dependent tunneling of carriers was studied by analyzing the current-voltage characteristics (I(V)) and the right (+) and left (-) circular polarized PL from the contact layers and the QW as a function of the applied bias. We have observed that the polarization degree from QW and contact emission is highly bias voltage sensitive. For low voltages the QW polarization exhibits strong oscillations with values up to 50% at 15 T and sign inversions for the voltages corresponding to the resonant tunneling of carriers into the well. The GaAs contact emission shows several bands including the indirect recombination between free electrons and holes localized at the 2DHG formed at the accumulation layer (2DHG-e). We have evidence that the spin polarized hole gas can contribute to the circular polarization degree of carriers in the QW. However, our results show that the circular polarization of the carriers in the QW is a complex issue which depends on various points, including the g-factors of the different layers, the spin-polarization of carriers in the contact layers, the density of carriers along the structure and the Rashba effect. The temporal evolution of the spin-polarization carriers was also investigated. We have measured the time-resolved polarized PL emission from the GaAs quantum well (QW) of a p-i-p GaAs/AlAs Resonant Tunneling Device (RTD). We have used a linearly-polarized Ti:Saphire laser and tuned below the QW absorption edge. Therefore, the electrons are created solely at the top GaAs layer and with no defined spin polarization. Under applied bias, the tunneling holes from the p-doping contact attain a quasi-stationary distribution along the RTD structure, while electrons are only photocreated during the pulse excitation with a ps Ti:Sa laser. These photogenerated electrons are driven by the applied bias and tunnel into the QW, where they might recombine with holes or tunnel out of the well. Under illumination, the current-voltage characteristics of the device present two additional features attributed, respectively, to resonant and -X electron tunneling. Optical measurements for biases where these two alternative transport mechanisms have competitive probabilities revealed an unusual carrier dynamics. The quantum well emission is strongly delayed and we observe a remarkable nonlinear effect where the emission intensity decreases at the arrival of a laser pulse. We propose a simple model that adequately describes our results where we assume that the indirect transition rate depends on the density of electrons accumulated along the structure. Under magnetic field, the PL transients reveal two rather distinct time constants, a short time ( ~ 1 ns) and a long one, which is longer than the laser repetition time (> 12 ns). The bi-exponential behavior indicates additional electron-tunneling processes, which may be associated to indirect tunneling through X-AlAs levels and tunneling of hot vs quasiequilibrium carriers at the accumulation layer. Immediately after the laser pulse, while the faster tunneling process dominates, the QW emission shows a rather small polarization. As the faster tunneling process dies out, the polarization increases to a value that remains approximately constant along the whole transient. This result demonstrates that electrons tunneling through these two distinct processes should present different spin-polarization values. We have also observed that at low biases, around to the expected -X resonance , the QW polarization is very sensitive to the excitation intensity, showing a signal inversion as a function the laser intensity. We attribute this effect to a critical dependence of the electron polarization on the occupation of the various levels involved on the process. Furthermore, at large biases, the long decay component almost disappears for low-excitation conditions and show an unusual time-dependent polarization behavior under high-excitation regime. For the analysis of this complex dynamics, we have also considered the process of tunneling out of the QW, which should become more effective, competing with the radiactive recombination process under high bias voltages. Finally, our results reveal new insights on the mechanisms that determine the spin-polarization of carriers tunneling through a doublebarrier structure and can be explored to develop spin-filter devices based on a RTD structure.Neste trabalho investigamos efeitos de spin em diodos de tunelamento ressonante p-i-p de GaAs/AlAs na presença de campo magnético paralelo à corrente túnel. Para isso, realizamos um estudo sistemático das curvas características de corrente-voltagem I(V) e da fotoluminescência (PL) resolvida em polarização das camadas do contato e do poço-quântico (QW), em função da voltagem aplicada. Observamos que o grau de polarização circular da emissão do QW e do contato são fortemente sensíveis à voltagem aplicada. Em particular, para baixas voltagens, a polarização QW exibe oscilações, atingindo valores de até 50% em 15T com inversões de sinal para voltagens correspondentes ao tunelamento ressonante de portadores. Na emissão observamos também a recombinação indireta entre elétrons livres e buracos localizados no gás bidimensional de buracos que se forma na camada de acumulação (2DHG). Os resultados obtidos mostram que esse gás bidimensional de buracos pode contribuir para o grau de polarização dos portadores no QW. Entretanto, verificamos também que origem da polarização dos portadores no QW é uma questão complexa que depende de vários pontos, incluindo fatores g das diferentes camadas, a polarização de spin dos portadores nas camadas de contato, a densidade de portadores ao longo da estrutura, efeito Rashba e etc. A evolução temporal dos portadores de spin-polarizados também foi investigada neste trabalho. Realizamos medidas da PL resolvida em polarização e resolvida no tempo para o QW de um DTR assimétrico. Sob voltagem aplicada, os buracos que tunelam a partir do contato dopado tipo-p atingem uma distribuição quase-estacionária ao longo do DTR, enquanto os elétrons são fotocriados apenas durante o pulso de laser. Os elétrons se movem sob ação da voltagem aplicada e tunelam no QW, onde podem se recombinar com buracos ou tunelar para fora do poço. Sob excitação óptica, as curvas I(V) do dispositivo apresentam dois picos adicionais atribuídos ao tunelamento ressonante e -X de elétrons, respectivamente. As medidas das emissões ópticas para as voltagens onde esses dois mecanismos alternativos de transporte têm probabilidades semelhantes revelam uma dinâmica de portadores incomum. Nessa condição, a emissão QW torna-se bastante lenta e observa-se um efeito não-linear no qual a intensidade de emissão diminui com a chegada de um novo pulso de laser. Para compreensão dos resultados obtidos, desenvolvemos um modelo simples onde consideramos que a taxa de transição indireta depende da densidade de elétrons acumulados. O modelo proposto descreve adequadamente nossos resultados experimentais. Na presença de campo magnético paralelo à corrente túnel, os transientes PL apresentam duas constantes de tempo distintas, uma curta (~ 1 ns) e uma longa, que é maior do que o tempo de repetição do laser (> 12 ns). Este comportamento bi-exponencial indica processos adicionais de tunelamento de elétrons, que podem estar associados ao tunelamento através dos estados da banda X do AlAs, e ao tunelamento de portadores quentes ( hot carriers ) vs portadores em quase-equilíbrio na camada de acumulação. Imediatamente após o pulso de laser, quando o processo de tunelamento mais rápido domina o transiente, a emissão QW mostra uma polarização pequena. Quando o processo de tunelamento mais rápido se extingue, a polarização aumenta para valores que permanecem aproximadamente constantes ao longo de todo o transiente. Este resultado demonstra que o tunelamento de elétrons através destes dois processos distintos deve apresentar diferentes valores de polarização de spin. Observamos também que para baixas voltagens, em torno da ressonância -X, a polarização QW é muito sensível à intensidade de excitação, mostrando uma inversão de sinal em função da intensidade do laser. Atribuímos este efeito a uma dependência crítica da polarização de elétrons pela ocupação dos diversos níveis envolvidos no processo. Além disso, em altas voltagens o decaimento da componente longa quase desaparece em condições de baixa excitação, e apresenta um comportamento incomum da polarização dependente do tempo no regime de alta excitação. Nossos resultados dão uma contribuição na compreensão de mecanismos que determinam a polarização de spin dos portadores em estruturas de barreira dupla, podendo ser útil no desenvolvimento de filtros de spin baseados em um DTR.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Física - PPGFUFSCarBRFísica da matéria condensadaDiodos de tunelamento ressonanteFotoluminescênciaPolarização de spinSpintrônicaCIENCIAS EXATAS E DA TERRA::FISICAEfeitos de spin em diodos de tunelamento ressonante tipo-pinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL4524.pdfapplication/pdf11370314https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/4943/1/4524.pdfcac1fe92ad828fa34bae021e46c39108MD51TEXT4524.pdf.txt4524.pdf.txtExtracted texttext/plain0https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/4943/2/4524.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD52THUMBNAIL4524.pdf.jpg4524.pdf.jpgIM Thumbnailimage/jpeg6273https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/4943/3/4524.pdf.jpge8561cd2b472c00a1e9439e617986a76MD53ufscar/49432019-09-11 04:15:46.687oai:repositorio.ufscar.br:ufscar/4943Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T12:49:20.515247Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Efeitos de spin em diodos de tunelamento ressonante tipo-p
title Efeitos de spin em diodos de tunelamento ressonante tipo-p
spellingShingle Efeitos de spin em diodos de tunelamento ressonante tipo-p
Galeti, Helder Vinicius Avanço
Física da matéria condensada
Diodos de tunelamento ressonante
Fotoluminescência
Polarização de spin
Spintrônica
CIENCIAS EXATAS E DA TERRA::FISICA
title_short Efeitos de spin em diodos de tunelamento ressonante tipo-p
title_full Efeitos de spin em diodos de tunelamento ressonante tipo-p
title_fullStr Efeitos de spin em diodos de tunelamento ressonante tipo-p
title_full_unstemmed Efeitos de spin em diodos de tunelamento ressonante tipo-p
title_sort Efeitos de spin em diodos de tunelamento ressonante tipo-p
author Galeti, Helder Vinicius Avanço
author_facet Galeti, Helder Vinicius Avanço
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3876752605313288
dc.contributor.author.fl_str_mv Galeti, Helder Vinicius Avanço
dc.contributor.advisor1.fl_str_mv Gobato, Yara Galvão
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7558531056409406
contributor_str_mv Gobato, Yara Galvão
dc.subject.por.fl_str_mv Física da matéria condensada
Diodos de tunelamento ressonante
Fotoluminescência
Polarização de spin
Spintrônica
topic Física da matéria condensada
Diodos de tunelamento ressonante
Fotoluminescência
Polarização de spin
Spintrônica
CIENCIAS EXATAS E DA TERRA::FISICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::FISICA
description In this work, we have investigated the spin effects in p-i-p GaAs/AlAs resonant tunneling diodes under magnetic field parallel to the tunnel current. The spin-dependent tunneling of carriers was studied by analyzing the current-voltage characteristics (I(V)) and the right (+) and left (-) circular polarized PL from the contact layers and the QW as a function of the applied bias. We have observed that the polarization degree from QW and contact emission is highly bias voltage sensitive. For low voltages the QW polarization exhibits strong oscillations with values up to 50% at 15 T and sign inversions for the voltages corresponding to the resonant tunneling of carriers into the well. The GaAs contact emission shows several bands including the indirect recombination between free electrons and holes localized at the 2DHG formed at the accumulation layer (2DHG-e). We have evidence that the spin polarized hole gas can contribute to the circular polarization degree of carriers in the QW. However, our results show that the circular polarization of the carriers in the QW is a complex issue which depends on various points, including the g-factors of the different layers, the spin-polarization of carriers in the contact layers, the density of carriers along the structure and the Rashba effect. The temporal evolution of the spin-polarization carriers was also investigated. We have measured the time-resolved polarized PL emission from the GaAs quantum well (QW) of a p-i-p GaAs/AlAs Resonant Tunneling Device (RTD). We have used a linearly-polarized Ti:Saphire laser and tuned below the QW absorption edge. Therefore, the electrons are created solely at the top GaAs layer and with no defined spin polarization. Under applied bias, the tunneling holes from the p-doping contact attain a quasi-stationary distribution along the RTD structure, while electrons are only photocreated during the pulse excitation with a ps Ti:Sa laser. These photogenerated electrons are driven by the applied bias and tunnel into the QW, where they might recombine with holes or tunnel out of the well. Under illumination, the current-voltage characteristics of the device present two additional features attributed, respectively, to resonant and -X electron tunneling. Optical measurements for biases where these two alternative transport mechanisms have competitive probabilities revealed an unusual carrier dynamics. The quantum well emission is strongly delayed and we observe a remarkable nonlinear effect where the emission intensity decreases at the arrival of a laser pulse. We propose a simple model that adequately describes our results where we assume that the indirect transition rate depends on the density of electrons accumulated along the structure. Under magnetic field, the PL transients reveal two rather distinct time constants, a short time ( ~ 1 ns) and a long one, which is longer than the laser repetition time (> 12 ns). The bi-exponential behavior indicates additional electron-tunneling processes, which may be associated to indirect tunneling through X-AlAs levels and tunneling of hot vs quasiequilibrium carriers at the accumulation layer. Immediately after the laser pulse, while the faster tunneling process dominates, the QW emission shows a rather small polarization. As the faster tunneling process dies out, the polarization increases to a value that remains approximately constant along the whole transient. This result demonstrates that electrons tunneling through these two distinct processes should present different spin-polarization values. We have also observed that at low biases, around to the expected -X resonance , the QW polarization is very sensitive to the excitation intensity, showing a signal inversion as a function the laser intensity. We attribute this effect to a critical dependence of the electron polarization on the occupation of the various levels involved on the process. Furthermore, at large biases, the long decay component almost disappears for low-excitation conditions and show an unusual time-dependent polarization behavior under high-excitation regime. For the analysis of this complex dynamics, we have also considered the process of tunneling out of the QW, which should become more effective, competing with the radiactive recombination process under high bias voltages. Finally, our results reveal new insights on the mechanisms that determine the spin-polarization of carriers tunneling through a doublebarrier structure and can be explored to develop spin-filter devices based on a RTD structure.
publishDate 2012
dc.date.available.fl_str_mv 2012-09-21
2016-06-02T20:15:25Z
dc.date.issued.fl_str_mv 2012-03-27
dc.date.accessioned.fl_str_mv 2016-06-02T20:15:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GALETI, Helder Vinicius Avanço. Efeitos de spin em diodos de tunelamento ressonante tipo-p. 2012. 123 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/4943
identifier_str_mv GALETI, Helder Vinicius Avanço. Efeitos de spin em diodos de tunelamento ressonante tipo-p. 2012. 123 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.
url https://repositorio.ufscar.br/handle/ufscar/4943
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Física - PPGF
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/4943/1/4524.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/4943/2/4524.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/4943/3/4524.pdf.jpg
bitstream.checksum.fl_str_mv cac1fe92ad828fa34bae021e46c39108
d41d8cd98f00b204e9800998ecf8427e
e8561cd2b472c00a1e9439e617986a76
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351087710339072