Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Avilez, Ive Marchioni
Orientador(a): Moraes, Gilberto lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular - PPGGEv
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/5374
Resumo: Pollution is nowadays a problem that affects all environments, including the freshwater and the species living in there. Among them, under the ecotoxicological point of view, fish are a relevant group and the biggest among vertebrates. Phenol is an exogenous chemical usually present in concentrations higher than those allowed by law. Phenol is an organic lipophilic xenobiotic that cause toxic effects even at low concentrations and its presence in freshwater results from discharge of industrial efffluents. The aim of the present study was to determine the phenol effects 1) in the liver and red blood cells antioxidant metabolism, 2) in the liver biotransformation (phase I and II), 3) in the brain acetylcholinesterase plus recovery of 1 and 2 weeks and 4) in gills, liver and kidney, under the histopathological point of view, in matrinxã, Brycon amazonicus, a freshwater teleost from Amazon basin, which is being widely cultivated in Sao Paulo state. For such, three assays were done. Firstly, the phenol LC50 was determined for 96 hours. Second, the exposition to phenol was carried out for 96 h to determine its effects on gills, liver and kidney. At last, an experiment of exposure for 96 h, followed by recovery for one and two weeks, was carried out to determine its antioxidant effects on the liver and on the red blood cell metabolism (vitamin C, SOD, CAT, GPx, GSH and G6PDH); on two liver biotransformation phase I (EROD and ECOD) and phase II activities (UDPGT and GST) and brain acetylcholinesterase activity. The LC50 to phenol was 17, 40 mg/L, showing that matrinxã is a very sensitive species to phenol. From this, the phenol concentration used in all experiments was 2 mg/L. Histopathology observations showed that phenol affected harder the gills than liver and kidney, causing apical and total fusion of the secondary lamella plus blood congestion and sub epithelial edema. In the liver diameter increase of the sinusoidal capillaries and blood stasis was observed. In the kidney, phenol caused an increase of the space between glomerulus and capsule. A hematocrit increase was observed in fish exposed and recovery for one week. These results, associated to gill lesions, suggested that matrinxã endured a reduction in oxygen absorption. Erythrocyte antioxidant metabolism did not suggest that matrinxã exposed to phenol was under oxidative stress. Only G6PDH activity was increased during exposure, while CAT activity was decreased in matrinxã s erythrocytes. Also, oxidative stress was not observed after recovery. The antioxidant metabolism in liver was not affected after exposure, but after recovery, as it is suggested by the increase of GPx activity after first week of recovery followed by its decrease after second week. Hepatic G6PDH also decreases after the second week. These results corroborated the hepatic biotransformation data, which was increasing in the EROD and ECOD activities. The occurrence of oxidative stress only after the recovery may be ascribed to the increase in the hepatic biotransformation enzymes of the phase I, wherein the ERO production occurs. Moreover, phenol might have an inhibitory effect on phase II enzymes after phenol exposure, as suggested by UDPGT and GST activities decreases. Phenol was capable of inhibiting UDPGT activity in vitro, an effect not observed with GST activity. An inhibition of EROD and ECOD activities should be happened after exposition. The brain AChE activity was also inhibited after phenol exposure, regaining the control values after recovery. However, the vitamin C concentration increased after exposure and recovery, while a persistent decrease was observed in the liver after exposure and recovery. These results demonstrated phenol toxicity to matrinxa and the need of limit matrinxã exposure to this xenobiotic.
id SCAR_b86c983efffbcabb5c7013f2df4be697
oai_identifier_str oai:repositorio.ufscar.br:ufscar/5374
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Avilez, Ive MarchioniMoraes, Gilbertohttp://lattes.cnpq.br/4427903557163246http://lattes.cnpq.br/22920469892817812016-06-02T20:20:28Z2009-09-252016-06-02T20:20:28Z2008-01-10AVILEZ, Ive Marchioni. Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol. 2008. 175 f. Tese (Doutorado em Ciências Biológicas) - Universidade Federal de São Carlos, São Carlos, 2008.https://repositorio.ufscar.br/handle/ufscar/5374Pollution is nowadays a problem that affects all environments, including the freshwater and the species living in there. Among them, under the ecotoxicological point of view, fish are a relevant group and the biggest among vertebrates. Phenol is an exogenous chemical usually present in concentrations higher than those allowed by law. Phenol is an organic lipophilic xenobiotic that cause toxic effects even at low concentrations and its presence in freshwater results from discharge of industrial efffluents. The aim of the present study was to determine the phenol effects 1) in the liver and red blood cells antioxidant metabolism, 2) in the liver biotransformation (phase I and II), 3) in the brain acetylcholinesterase plus recovery of 1 and 2 weeks and 4) in gills, liver and kidney, under the histopathological point of view, in matrinxã, Brycon amazonicus, a freshwater teleost from Amazon basin, which is being widely cultivated in Sao Paulo state. For such, three assays were done. Firstly, the phenol LC50 was determined for 96 hours. Second, the exposition to phenol was carried out for 96 h to determine its effects on gills, liver and kidney. At last, an experiment of exposure for 96 h, followed by recovery for one and two weeks, was carried out to determine its antioxidant effects on the liver and on the red blood cell metabolism (vitamin C, SOD, CAT, GPx, GSH and G6PDH); on two liver biotransformation phase I (EROD and ECOD) and phase II activities (UDPGT and GST) and brain acetylcholinesterase activity. The LC50 to phenol was 17, 40 mg/L, showing that matrinxã is a very sensitive species to phenol. From this, the phenol concentration used in all experiments was 2 mg/L. Histopathology observations showed that phenol affected harder the gills than liver and kidney, causing apical and total fusion of the secondary lamella plus blood congestion and sub epithelial edema. In the liver diameter increase of the sinusoidal capillaries and blood stasis was observed. In the kidney, phenol caused an increase of the space between glomerulus and capsule. A hematocrit increase was observed in fish exposed and recovery for one week. These results, associated to gill lesions, suggested that matrinxã endured a reduction in oxygen absorption. Erythrocyte antioxidant metabolism did not suggest that matrinxã exposed to phenol was under oxidative stress. Only G6PDH activity was increased during exposure, while CAT activity was decreased in matrinxã s erythrocytes. Also, oxidative stress was not observed after recovery. The antioxidant metabolism in liver was not affected after exposure, but after recovery, as it is suggested by the increase of GPx activity after first week of recovery followed by its decrease after second week. Hepatic G6PDH also decreases after the second week. These results corroborated the hepatic biotransformation data, which was increasing in the EROD and ECOD activities. The occurrence of oxidative stress only after the recovery may be ascribed to the increase in the hepatic biotransformation enzymes of the phase I, wherein the ERO production occurs. Moreover, phenol might have an inhibitory effect on phase II enzymes after phenol exposure, as suggested by UDPGT and GST activities decreases. Phenol was capable of inhibiting UDPGT activity in vitro, an effect not observed with GST activity. An inhibition of EROD and ECOD activities should be happened after exposition. The brain AChE activity was also inhibited after phenol exposure, regaining the control values after recovery. However, the vitamin C concentration increased after exposure and recovery, while a persistent decrease was observed in the liver after exposure and recovery. These results demonstrated phenol toxicity to matrinxa and the need of limit matrinxã exposure to this xenobiotic.A poluição é hoje um problema que afeta todos os ambientes inclusive o de água doce, e conseqüentemente, os organismos que vivem nele. Entre estes, os peixes formam um grupo de grande importância sob a perspectiva ecotoxicológica, pois é o maior dentre os vertebrados. O fenol é uma substância química exógena que está usualmente em concentrações acima da permitida por lei. Este xenobiótico é um composto orgânico e lipofílico e sua presença nos corpos de água se deve principalmente aos despejos de origem industrial, podendo causar ações tóxicas mesmo em baixas concentrações. O objetivo deste trabalho foi avaliar os efeitos do fenol, 1) no metabolismo antioxidante eritrocitário e hepático, 2) na biotransformação hepática (fase I e fase II), 3) na atividade da acetilcolinesterase cerebral e na recuperação de 1 e 2 semanas, e 4) nas brânquias, fígado e rim, do ponto de vista histopatológico, em matrinxã, Brycon amazonicus, um teleósteo de água doce originário da bacia Amazônica que vem sendo amplamente cultivado no Estado de São Paulo. Foram realizados 3 ensaios; primeiro, a determinação da CL50 de 96 horas. A partir deste dado, todos os outros experimentos foram feitos utilizando-se 10% da CL50/96h, ou seja, um teste subletal. O segundo ensaio foi a exposição ao fenol por 96 horas para determinar seu efeito nas brânquias, fígado e rim. Por fim, foi feita uma exposição por 96 horas seguida da recuperação por 1 e 2 semanas para se determinar os efeitos do fenol sobre o metabolismo antioxidante (Vit C, SOD, CAT, GPX, GSH, G6PDH) eritrocitário e hepático, e a possível recuperação; a biotransformação hepática (fase I, EROD e ECOD e II, UDPGT e GST), e os efeitos sobre a atividade da acetilcolinesterase cerebral. Os resultados obtidos mostraram que o fenol apresenta uma CL50 de 17,40 mg/L, e que o matrinxã é um organismo bem sensível ao fenol. Com este dado utilizamos uma concentração de fenol de 2 mg/L durante os experimentos de exposição subletal. Os dados observados na avaliação histológica mostraram que o fenol ocasionou alterações mais intensas nas brânquias que no fígado e no rim, causando principalmente fusão apical e total da lamela secundária, com congestão sanguínea e edema subepitelial. No fígado foi possível observar um aumento no diâmetro dos capilares sinusóides e estase sanguínea, e no rim o fenol causou um aumento do espaço entre o glomérulo e a cápsula renal. No experimento de exposição ao fenol em concentração subletal posterior recuperação, verificamos um aumento nos valores de hematócrito no grupo exposto e no grupo recuperado por 1 semana. Estes dados, associados às lesões branquiais, sugerem que o matrinxã sofreu uma diminuição na absorção de oxigênio. O metabolismo antioxidante eritrocitário não sugere estresse oxidativo durante a exposição ao fenol, aumentando somente a atividade da G6PDH, durante a exposição, e queda da atividade da CAT. Também não se observou estresse oxidativo durante a recuperação. Os resultados da análise do metabolismo antioxidante no fígado mostraram que não ocorreu estresse oxidativo após a exposição ao fenol. Todavia, após a recuperação, o aumento da atividade da GPx na primeira semana de recuperação e a redução na segunda semana sugerem estresse oxidativo . Observouse também uma redução na atividade da G6PDH após a segunda semana de recuperação. Estes dados corroboram os de biotransformação hepática que mostraram um aumento da atividade de EROD e ECOD na recuperação. A ocorrência de estresse oxidativo somente na recuperação pode ter sido ocasionada pelo aumento da atividade das enzimas da biotransformação de fase I, onde pode ocorre produção de ERO. Além do mais, o fenol parece exercer um efeito inibidor de algumas enzimas após a exposição, levando à diminuição de UDPGT e GST, as quais aumentaram sua atividade na ausência de fenol. O fenol também mostrou ser um inibidor da atividade da UDPGT in vitro , o que não ocorreu para a GST. Pode ter ocorrido também a inibição de EROD e ECOD durante a exposição. No cérebro a atividade da AChE também apresentou inibição após a exposição ao fenol, retornando aos valores normais após a recuperação. Entretanto, a concentração de vitamina C aumentou durante a exposição e a recuperação no cérebro, enquanto que no fígado observou-se redução. Estes dados mostram o grau de toxicidade do fenol para o matrinxã, mesmo em dose subletal, e a necessidade de redução de seu lançamento nos corpos de água para proteção desta espécie.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Genética Evolutiva e Biologia Molecular - PPGGEvUFSCarBRToxicologiaBioquímicaEstresse oxidativoPeixeCIENCIAS BIOLOGICAS::GENETICAMetabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenolinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL2118.pdfapplication/pdf2821272https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/5374/1/2118.pdf3064964db7ce4796f6f67a637623ae54MD51THUMBNAIL2118.pdf.jpg2118.pdf.jpgIM Thumbnailimage/jpeg8722https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/5374/2/2118.pdf.jpg883027f88cac0d282ee824ec3d63bfbeMD52ufscar/53742019-09-11 02:46:00.995oai:repositorio.ufscar.br:ufscar/5374Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T12:49:55.048044Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol
title Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol
spellingShingle Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol
Avilez, Ive Marchioni
Toxicologia
Bioquímica
Estresse oxidativo
Peixe
CIENCIAS BIOLOGICAS::GENETICA
title_short Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol
title_full Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol
title_fullStr Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol
title_full_unstemmed Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol
title_sort Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol
author Avilez, Ive Marchioni
author_facet Avilez, Ive Marchioni
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2292046989281781
dc.contributor.author.fl_str_mv Avilez, Ive Marchioni
dc.contributor.advisor1.fl_str_mv Moraes, Gilberto
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4427903557163246
contributor_str_mv Moraes, Gilberto
dc.subject.por.fl_str_mv Toxicologia
Bioquímica
Estresse oxidativo
Peixe
topic Toxicologia
Bioquímica
Estresse oxidativo
Peixe
CIENCIAS BIOLOGICAS::GENETICA
dc.subject.cnpq.fl_str_mv CIENCIAS BIOLOGICAS::GENETICA
description Pollution is nowadays a problem that affects all environments, including the freshwater and the species living in there. Among them, under the ecotoxicological point of view, fish are a relevant group and the biggest among vertebrates. Phenol is an exogenous chemical usually present in concentrations higher than those allowed by law. Phenol is an organic lipophilic xenobiotic that cause toxic effects even at low concentrations and its presence in freshwater results from discharge of industrial efffluents. The aim of the present study was to determine the phenol effects 1) in the liver and red blood cells antioxidant metabolism, 2) in the liver biotransformation (phase I and II), 3) in the brain acetylcholinesterase plus recovery of 1 and 2 weeks and 4) in gills, liver and kidney, under the histopathological point of view, in matrinxã, Brycon amazonicus, a freshwater teleost from Amazon basin, which is being widely cultivated in Sao Paulo state. For such, three assays were done. Firstly, the phenol LC50 was determined for 96 hours. Second, the exposition to phenol was carried out for 96 h to determine its effects on gills, liver and kidney. At last, an experiment of exposure for 96 h, followed by recovery for one and two weeks, was carried out to determine its antioxidant effects on the liver and on the red blood cell metabolism (vitamin C, SOD, CAT, GPx, GSH and G6PDH); on two liver biotransformation phase I (EROD and ECOD) and phase II activities (UDPGT and GST) and brain acetylcholinesterase activity. The LC50 to phenol was 17, 40 mg/L, showing that matrinxã is a very sensitive species to phenol. From this, the phenol concentration used in all experiments was 2 mg/L. Histopathology observations showed that phenol affected harder the gills than liver and kidney, causing apical and total fusion of the secondary lamella plus blood congestion and sub epithelial edema. In the liver diameter increase of the sinusoidal capillaries and blood stasis was observed. In the kidney, phenol caused an increase of the space between glomerulus and capsule. A hematocrit increase was observed in fish exposed and recovery for one week. These results, associated to gill lesions, suggested that matrinxã endured a reduction in oxygen absorption. Erythrocyte antioxidant metabolism did not suggest that matrinxã exposed to phenol was under oxidative stress. Only G6PDH activity was increased during exposure, while CAT activity was decreased in matrinxã s erythrocytes. Also, oxidative stress was not observed after recovery. The antioxidant metabolism in liver was not affected after exposure, but after recovery, as it is suggested by the increase of GPx activity after first week of recovery followed by its decrease after second week. Hepatic G6PDH also decreases after the second week. These results corroborated the hepatic biotransformation data, which was increasing in the EROD and ECOD activities. The occurrence of oxidative stress only after the recovery may be ascribed to the increase in the hepatic biotransformation enzymes of the phase I, wherein the ERO production occurs. Moreover, phenol might have an inhibitory effect on phase II enzymes after phenol exposure, as suggested by UDPGT and GST activities decreases. Phenol was capable of inhibiting UDPGT activity in vitro, an effect not observed with GST activity. An inhibition of EROD and ECOD activities should be happened after exposition. The brain AChE activity was also inhibited after phenol exposure, regaining the control values after recovery. However, the vitamin C concentration increased after exposure and recovery, while a persistent decrease was observed in the liver after exposure and recovery. These results demonstrated phenol toxicity to matrinxa and the need of limit matrinxã exposure to this xenobiotic.
publishDate 2008
dc.date.issued.fl_str_mv 2008-01-10
dc.date.available.fl_str_mv 2009-09-25
2016-06-02T20:20:28Z
dc.date.accessioned.fl_str_mv 2016-06-02T20:20:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv AVILEZ, Ive Marchioni. Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol. 2008. 175 f. Tese (Doutorado em Ciências Biológicas) - Universidade Federal de São Carlos, São Carlos, 2008.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/5374
identifier_str_mv AVILEZ, Ive Marchioni. Metabolismo antioxidativo, biotransformação hepática e alterações histológicas de matrinxã (Brycon amazonicus, SPIX & AGASSIZ, 1829, CHARACIDAE) exposto ao fenol. 2008. 175 f. Tese (Doutorado em Ciências Biológicas) - Universidade Federal de São Carlos, São Carlos, 2008.
url https://repositorio.ufscar.br/handle/ufscar/5374
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular - PPGGEv
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/5374/1/2118.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/5374/2/2118.pdf.jpg
bitstream.checksum.fl_str_mv 3064964db7ce4796f6f67a637623ae54
883027f88cac0d282ee824ec3d63bfbe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351091020693504