Nanoestructured catalysts for organic reactions: design, synthesis and applications

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Lima, Carolina Guimarães de Souza
Orientador(a): Paixão, Márcio Weber lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Química - PPGQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/10395
Resumo: The development of more efficient and selective catalysts actively contributes for the design of safer, cleaner and less energy-demanding processes, and, therefore, catalysis is one of the cornerstones of green chemistry. In this sense, supported-heterogeneous catalysts represent a great advance in this field, especially because they overcome the difficulty in catalyst separation associated to homogeneous catalysts. In this context, this thesis is focused on the development of nanostructured materials for application in Organic Synthesis. In Chapter 1, a brief introduction regarding fundamental concepts in catalysis is presented, focusing on the synthesis and application of magnetically recoverable catalysts. Chapter 2 described the design, preparation and characterization of a new magnetically recoverable niobium nanocatalyst for application in the synthesis of 3,4-dihydropyrimidinones via Biginelli reaction. The catalyst (Fe3O4@Nb2O5) was prepared by coating magnetite nanoparticles with niobium oxide by using a simple wet impregnation method. The developed protocol was applicable to a wide range of aliphatic and aromatic substrates, and structurally diverse products were obtained in excellent yields. Additionally, the nanocatalyst could be easily separated from the reaction mixture with the aid of a magnetic field and reused several times without any losses in its catalytic activity. Moreover, experimental observations provided an insight into the reaction pathway. Chapter 3 describes the synthesis and characterization of a magnetic ZSM-5 zeolite with core-shell type structure for application on the valorization of bio-derived furfuryl alcohol. The magnetic HZSM-5 zeolite catalyst was prepared by the encapsulation of magnetite particles in the zeolite grains using a cationic polymer followed by calcination and next, an ion exchange to obtain the zeolite in its acid form. Remarkably, the catalytic system displayed a tunable selectivity to γ- valerolactone, alkyl levulinates and even levulinic acid by simply changing the reaction conditions. Furthermore, the catalyst could be easily recovered and reused for several reaction cycles without significant losses in its catalytic activity.
id SCAR_cf0ff184263c729b1b31d6678755cd04
oai_identifier_str oai:repositorio.ufscar.br:ufscar/10395
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Lima, Carolina Guimarães de SouzaPaixão, Márcio Weberhttp://lattes.cnpq.br/3773908504964104http://lattes.cnpq.br/80508100291103352018-08-22T12:27:10Z2018-08-22T12:27:10Z2016-07-29LIMA, Carolina Guimarães de Souza. Nanoestructured catalysts for organic reactions: design, synthesis and applications. 2016. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10395.https://repositorio.ufscar.br/handle/ufscar/10395The development of more efficient and selective catalysts actively contributes for the design of safer, cleaner and less energy-demanding processes, and, therefore, catalysis is one of the cornerstones of green chemistry. In this sense, supported-heterogeneous catalysts represent a great advance in this field, especially because they overcome the difficulty in catalyst separation associated to homogeneous catalysts. In this context, this thesis is focused on the development of nanostructured materials for application in Organic Synthesis. In Chapter 1, a brief introduction regarding fundamental concepts in catalysis is presented, focusing on the synthesis and application of magnetically recoverable catalysts. Chapter 2 described the design, preparation and characterization of a new magnetically recoverable niobium nanocatalyst for application in the synthesis of 3,4-dihydropyrimidinones via Biginelli reaction. The catalyst (Fe3O4@Nb2O5) was prepared by coating magnetite nanoparticles with niobium oxide by using a simple wet impregnation method. The developed protocol was applicable to a wide range of aliphatic and aromatic substrates, and structurally diverse products were obtained in excellent yields. Additionally, the nanocatalyst could be easily separated from the reaction mixture with the aid of a magnetic field and reused several times without any losses in its catalytic activity. Moreover, experimental observations provided an insight into the reaction pathway. Chapter 3 describes the synthesis and characterization of a magnetic ZSM-5 zeolite with core-shell type structure for application on the valorization of bio-derived furfuryl alcohol. The magnetic HZSM-5 zeolite catalyst was prepared by the encapsulation of magnetite particles in the zeolite grains using a cationic polymer followed by calcination and next, an ion exchange to obtain the zeolite in its acid form. Remarkably, the catalytic system displayed a tunable selectivity to γ- valerolactone, alkyl levulinates and even levulinic acid by simply changing the reaction conditions. Furthermore, the catalyst could be easily recovered and reused for several reaction cycles without significant losses in its catalytic activity.O desenvolvimento de catalisadores mais eficientes e seletivos contribui para o design de processos mais seguros, mais limpos e mais energeticamente viáveis, e, portanto, a catálise é um dos pilares da Química Verde. Neste sentido, catalisadores heterogêneos suportados representam um grande avanço nesta área, principalmente porque superam as dificuldades de separação dos catalisadores homogêneos. Neste contexto, esta tese é focada no desenvolvimento de materiais nanoestruturados para aplicação em Síntese Orgânica. No Capítulo 1 é apresentada uma breve introdução envolvendo conceitos fundamentais em catálise, com foco na síntese e aplicação de catalisadores magneticamente recuperáveis. O Capítulo 2 descreve o design, preparação e caracterização de um novo catalisador de nióbio magneticamente recuperável e sua aplicação na síntese de 1,4-dihidropirimidinonas via reação de Biginelli. O catalisador foi preparado a partir do recobrimento de nanopartículas de magnetita com óxido de nióbio utilizando um simples método de impregnação úmida. O método desenvolvido pôde ser aplicado para uma grande quantidade de substratos alifáticos e aromáticos, e produtos com grande diversidade estrutural foram obtidos com rendimentos excelentes. Além disso, o nanocatalisador pode ser facilmente separado do meio reacional usando um campo magnético e reutilizado várias vezes sem nenhuma perda significativa de sua atividade catalítica. Adicionalmente, observações experimentais forneceram informações sobre o mecanismo da reação. O Capítulo 3 descreve a síntese e caracterização de uma zeólita magneticamente recuperável do tipo HZSM-5 e sua aplicação na valorização do álcool furfurílico. O catalisador constituído pela zeólita magnética foi preparado através do encapsulamento de partículas de magnetita nos grãos da zeólita utilizando um polímero catiônico seguido de calcinação e de uma etapa de troca iônica para a obtenção da zeólita em sua forma ácida. Interessantemente, a atividade catalítica deste sistema mostrou possuir uma seletividade ajustável para γ-valerolactona, levulinatos de alquila e até mesmo ácido levulínico através da simples mudança das condições reacionais. Além disso, o catalisador pôde ser facilmente recuperado e reutilizado em vários ciclos reacionais sem perdas significativas em sua atividade catalítica.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarCatálise heterogêneaReações multicomponenteQuímica verdeBiomassaSíntese orgânicaHeterogeneous catalystReaction mixtureGreen chemistryBiomassOrganic synthesisCIENCIAS EXATAS E DA TERRA::QUIMICACIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA::CINETICA QUIMICA E CATALISECIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICA::SINTESE ORGANICANanoestructured catalysts for organic reactions: design, synthesis and applicationsCatalisadores nanoestruturados para reações orgânicas: design, síntese e aplicaçõesCatalisadores nanoestruturados para reações orgânicas: design, síntese e aplicaçõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnlineinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/10395/4/license.txtae0398b6f8b235e40ad82cba6c50031dMD54ORIGINALLIMA_Carolina_2018.pdfLIMA_Carolina_2018.pdfapplication/pdf16715552https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/10395/5/LIMA_Carolina_2018.pdf663e8bac690f87738487c8a4e351a514MD55TEXTLIMA_Carolina_2018.pdf.txtLIMA_Carolina_2018.pdf.txtExtracted texttext/plain294489https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/10395/6/LIMA_Carolina_2018.pdf.txt50c6024f741b0ed955a725a1d66434deMD56THUMBNAILLIMA_Carolina_2018.pdf.jpgLIMA_Carolina_2018.pdf.jpgIM Thumbnailimage/jpeg8392https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/10395/7/LIMA_Carolina_2018.pdf.jpg493de6db3da2dde0bc5e149b18193d51MD57ufscar/103952019-09-11 03:20:25.051oai:repositorio.ufscar.br:ufscar/10395TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T12:55:09.248799Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Nanoestructured catalysts for organic reactions: design, synthesis and applications
dc.title.alternative.por.fl_str_mv Catalisadores nanoestruturados para reações orgânicas: design, síntese e aplicações
Catalisadores nanoestruturados para reações orgânicas: design, síntese e aplicações
title Nanoestructured catalysts for organic reactions: design, synthesis and applications
spellingShingle Nanoestructured catalysts for organic reactions: design, synthesis and applications
Lima, Carolina Guimarães de Souza
Catálise heterogênea
Reações multicomponente
Química verde
Biomassa
Síntese orgânica
Heterogeneous catalyst
Reaction mixture
Green chemistry
Biomass
Organic synthesis
CIENCIAS EXATAS E DA TERRA::QUIMICA
CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA::CINETICA QUIMICA E CATALISE
CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICA::SINTESE ORGANICA
title_short Nanoestructured catalysts for organic reactions: design, synthesis and applications
title_full Nanoestructured catalysts for organic reactions: design, synthesis and applications
title_fullStr Nanoestructured catalysts for organic reactions: design, synthesis and applications
title_full_unstemmed Nanoestructured catalysts for organic reactions: design, synthesis and applications
title_sort Nanoestructured catalysts for organic reactions: design, synthesis and applications
author Lima, Carolina Guimarães de Souza
author_facet Lima, Carolina Guimarães de Souza
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/8050810029110335
dc.contributor.author.fl_str_mv Lima, Carolina Guimarães de Souza
dc.contributor.advisor1.fl_str_mv Paixão, Márcio Weber
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3773908504964104
contributor_str_mv Paixão, Márcio Weber
dc.subject.por.fl_str_mv Catálise heterogênea
Reações multicomponente
Química verde
Biomassa
Síntese orgânica
topic Catálise heterogênea
Reações multicomponente
Química verde
Biomassa
Síntese orgânica
Heterogeneous catalyst
Reaction mixture
Green chemistry
Biomass
Organic synthesis
CIENCIAS EXATAS E DA TERRA::QUIMICA
CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA::CINETICA QUIMICA E CATALISE
CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICA::SINTESE ORGANICA
dc.subject.eng.fl_str_mv Heterogeneous catalyst
Reaction mixture
Green chemistry
Biomass
Organic synthesis
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA
CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA::CINETICA QUIMICA E CATALISE
CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICA::SINTESE ORGANICA
description The development of more efficient and selective catalysts actively contributes for the design of safer, cleaner and less energy-demanding processes, and, therefore, catalysis is one of the cornerstones of green chemistry. In this sense, supported-heterogeneous catalysts represent a great advance in this field, especially because they overcome the difficulty in catalyst separation associated to homogeneous catalysts. In this context, this thesis is focused on the development of nanostructured materials for application in Organic Synthesis. In Chapter 1, a brief introduction regarding fundamental concepts in catalysis is presented, focusing on the synthesis and application of magnetically recoverable catalysts. Chapter 2 described the design, preparation and characterization of a new magnetically recoverable niobium nanocatalyst for application in the synthesis of 3,4-dihydropyrimidinones via Biginelli reaction. The catalyst (Fe3O4@Nb2O5) was prepared by coating magnetite nanoparticles with niobium oxide by using a simple wet impregnation method. The developed protocol was applicable to a wide range of aliphatic and aromatic substrates, and structurally diverse products were obtained in excellent yields. Additionally, the nanocatalyst could be easily separated from the reaction mixture with the aid of a magnetic field and reused several times without any losses in its catalytic activity. Moreover, experimental observations provided an insight into the reaction pathway. Chapter 3 describes the synthesis and characterization of a magnetic ZSM-5 zeolite with core-shell type structure for application on the valorization of bio-derived furfuryl alcohol. The magnetic HZSM-5 zeolite catalyst was prepared by the encapsulation of magnetite particles in the zeolite grains using a cationic polymer followed by calcination and next, an ion exchange to obtain the zeolite in its acid form. Remarkably, the catalytic system displayed a tunable selectivity to γ- valerolactone, alkyl levulinates and even levulinic acid by simply changing the reaction conditions. Furthermore, the catalyst could be easily recovered and reused for several reaction cycles without significant losses in its catalytic activity.
publishDate 2016
dc.date.issued.fl_str_mv 2016-07-29
dc.date.accessioned.fl_str_mv 2018-08-22T12:27:10Z
dc.date.available.fl_str_mv 2018-08-22T12:27:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA, Carolina Guimarães de Souza. Nanoestructured catalysts for organic reactions: design, synthesis and applications. 2016. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10395.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/10395
identifier_str_mv LIMA, Carolina Guimarães de Souza. Nanoestructured catalysts for organic reactions: design, synthesis and applications. 2016. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10395.
url https://repositorio.ufscar.br/handle/ufscar/10395
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química - PPGQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/10395/4/license.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/10395/5/LIMA_Carolina_2018.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/10395/6/LIMA_Carolina_2018.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/10395/7/LIMA_Carolina_2018.pdf.jpg
bitstream.checksum.fl_str_mv ae0398b6f8b235e40ad82cba6c50031d
663e8bac690f87738487c8a4e351a514
50c6024f741b0ed955a725a1d66434de
493de6db3da2dde0bc5e149b18193d51
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351129021087744