Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Baccarin, Marina
Orientador(a): Fatibello Filho, Orlando lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Química - PPGQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/7926
Resumo: In this work are reported the development of new architectures for sensors using carbon nanomaterials. Firstly, the investigation of the nanomaterials reduced graphene oxide (RGO) and carbon black (CB) in chitosan film (CTS) modifying the surface of a glassy carbon electrode (GCE) for the development of new electrochemical sensor is described. The sensor was characterized by using scanning electron microscopy (SEM), ultraviolet spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering and cyclic voltammetry (CV). Using the Nicholson method and the results obtained by CV with the proposed RGO-CB-CTS/GCE, the heterogeneous electron transfer rate constant (k0) of 5.6 × 10−3 cm s−1 was obtained. The proposed electrode was applied for the simultaneous determination of dopamine (DA) (neurotransmitter) and paracetamol (PAR) (analgesic). Employing SWV, DA presented an anodic peak at 0.25 V and PAR at 0.50 V vs. Ag/AgCl (3.0 mol L–1 KCl). The analytical curves obtained were linear in the range from 3.9  10–6 to 3.4  10–5 mol L–1 and between 2.0  10–6 and 1.7  10–5 mol L–1 with detection limits of 2.0  10–8 and 5.3  10–8 mol L–1 for DA and PAR, respectively. The developed sensor presented advantages such as simple preparation, low cost of nanomaterials used, fast response (7 s for each measure). Besides, the sensor was successfully applied in the simultaneous determination of the analytes in synthetic urine samples. The second fabricated sensor was based on the modification of a GCE with nanodiamond (Dnano) within a Poly(allylamine hydrochloride) (PAH) film. The Dnano-PAH/GCE sensor was characterized by Fourier transform infrared spectroscopy and cyclic voltammetry. It was observed a stability of the dispersion and a k0 of 2.0 × 10−2 cm s−1 was obtained using the Nicholson method and the results obtained from CV technique. The developed sensor was applied for determination of catechol (CAT) using differential-pulse Baccarin, M. ix voltammetry (DPV). Under optimal experimental conditions, the anodic peak current was linear in the CAT concentration range of 2.0 × 10−6 to 1.1 × 10−4 mol L−1 with a detection limit of 1.5 × 10−6 mol L−1. The proposed method was applied for the determination of CAT in natural water samples, presenting vantages such as fast response (9 s to carry out one measure), selectivity and simplicity of working electrode fabrication.
id SCAR_e080f11136460892f6beecae16d77f68
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7926
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Baccarin, MarinaFatibello Filho, Orlandohttp://lattes.cnpq.br/9859737944357808http://lattes.cnpq.br/14313670874123662016-10-20T13:39:39Z2016-10-20T13:39:39Z2016-02-19BACCARIN, Marina. Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono. 2016. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7926.https://repositorio.ufscar.br/handle/ufscar/7926In this work are reported the development of new architectures for sensors using carbon nanomaterials. Firstly, the investigation of the nanomaterials reduced graphene oxide (RGO) and carbon black (CB) in chitosan film (CTS) modifying the surface of a glassy carbon electrode (GCE) for the development of new electrochemical sensor is described. The sensor was characterized by using scanning electron microscopy (SEM), ultraviolet spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering and cyclic voltammetry (CV). Using the Nicholson method and the results obtained by CV with the proposed RGO-CB-CTS/GCE, the heterogeneous electron transfer rate constant (k0) of 5.6 × 10−3 cm s−1 was obtained. The proposed electrode was applied for the simultaneous determination of dopamine (DA) (neurotransmitter) and paracetamol (PAR) (analgesic). Employing SWV, DA presented an anodic peak at 0.25 V and PAR at 0.50 V vs. Ag/AgCl (3.0 mol L–1 KCl). The analytical curves obtained were linear in the range from 3.9  10–6 to 3.4  10–5 mol L–1 and between 2.0  10–6 and 1.7  10–5 mol L–1 with detection limits of 2.0  10–8 and 5.3  10–8 mol L–1 for DA and PAR, respectively. The developed sensor presented advantages such as simple preparation, low cost of nanomaterials used, fast response (7 s for each measure). Besides, the sensor was successfully applied in the simultaneous determination of the analytes in synthetic urine samples. The second fabricated sensor was based on the modification of a GCE with nanodiamond (Dnano) within a Poly(allylamine hydrochloride) (PAH) film. The Dnano-PAH/GCE sensor was characterized by Fourier transform infrared spectroscopy and cyclic voltammetry. It was observed a stability of the dispersion and a k0 of 2.0 × 10−2 cm s−1 was obtained using the Nicholson method and the results obtained from CV technique. The developed sensor was applied for determination of catechol (CAT) using differential-pulse Baccarin, M. ix voltammetry (DPV). Under optimal experimental conditions, the anodic peak current was linear in the CAT concentration range of 2.0 × 10−6 to 1.1 × 10−4 mol L−1 with a detection limit of 1.5 × 10−6 mol L−1. The proposed method was applied for the determination of CAT in natural water samples, presenting vantages such as fast response (9 s to carry out one measure), selectivity and simplicity of working electrode fabrication.Neste trabalho de mestrado são reportados o desenvolvimento de novas arquiteturas de sensores utilizando nanomateriais de carbono. Assim, primeiramente, a modificação da superfície de um eletrodo de carbono vítreo (GCE) com os nanomateriais óxido de grafeno reduzido (RGO) e carbon black (CB; negro de fumo) em um filme de quitosana (CTS) para o desenvolvimento de um sensor eletroquímico é descrito. O sensor foi caracterizado utilizando a microscopia eletrônica de varredura (SEM), espectroscopia de ultravioleta, infravermelho com transformada de Fourier, espalhamento dinâmico de luz e voltametria cíclica (CV). Utilizando-se o método de Nicholson e dados obtidos por CV a partir do eletrodo RGO-CBCTS/ GCE, a constante heterogênea de transferência de elétrons (k0) de 5,6 × 10−3 cm s−1 foi obtida. O eletrodo proposto foi utilizado na determinação de dopamina (DA) (neurotransmissor) e paracetamol (PAR) (analgésico). Dessa forma, empregando-se a voltametria de onda quadrada (SWV), obteve-se um potencial de pico anódico em 0,25 V para a DA e em 0,50 V para o PAR vs. Ag/AgCl (KCl 3,0 mol L–1). As curvas analíticas obtidas foram lineares nas faixas de 3,9  10–6 a 3,4  10–5 mol L–1 e 2,0  10–6 e 1,7  10–5 mol L–1 com limites de detecção de 2,0  10–8 e 5,3  10–8 mol L–1 para DA e PAR, respectivamente. Foi observado no sensor desenvolvido vantagens como a simples confecção do eletrodo, baixo custo dos nanomateriais utilizados, resposta rápida (7 s para cada medida). Ademais, este sensor foi aplicado com sucesso na determinação simultânea destes analitos em amostras de urina sintética. O segundo sensor desenvolvido foi baseado na modicação da superfície do GCE com nanodiamantes (Dnano) em um filme de hidrocloreto de polialilamina (PAH). O sensor Dnano-PAH/GCE foi caracterizado utilizando-se um espectrômetro de infravermelho com transformada de Fourier e CV. A Baccarin, M. vii dispersão destes materiais em água foi estável e um k0 igual a 2,0 × 10−2 cm s−1 foi estimado utilizando o método de Nicholson e dados de CV. O sensor desenvolvido foi usado para a determinação de catecol (CAT) utilizando-se a voltametria de pulso diferencial (DPV). Após as condições experimentais otimizadas, a corrente de pico anódica para o CAT foi linear na faixa de concentração de 2,0 × 10−6 a 1,1 × 10−4 mol L−1 com um limite de detecção de 1,5 × 10−6 mol L−1. O método proposto foi aplicado para a determinação de CAT em amostras de águas naturais, com algumas vantagens como resposta rápida (9 s para realizar cada medida), seletividade e simplicidade de construção do eletrodo de trabalho.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Química - PPGQUFSCarSensoresMateriaisCarbonoNanoestruturadosCIENCIAS EXATAS E DA TERRA::QUIMICANovas arquiteturas para sensores modificados com materiais nanoestruturados de carbonoNew architectures for sensors using carbon nanomaterialsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnlineinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissMBna.pdfDissMBna.pdfapplication/pdf2964648https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7926/1/DissMBna.pdfaa3df289cd70876ea15262c53880aca3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7926/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTDissMBna.pdf.txtDissMBna.pdf.txtExtracted texttext/plain158567https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7926/3/DissMBna.pdf.txt682a9456293f39c26af07d9cc985fed1MD53THUMBNAILDissMBna.pdf.jpgDissMBna.pdf.jpgIM Thumbnailimage/jpeg10110https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7926/4/DissMBna.pdf.jpg8ea121b6678feacd6834ba463c936542MD54ufscar/79262019-09-11 02:34:43.452oai:repositorio.ufscar.br:ufscar/7926TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-05-25T12:53:23.825190Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono
dc.title.alternative.eng.fl_str_mv New architectures for sensors using carbon nanomaterials
title Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono
spellingShingle Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono
Baccarin, Marina
Sensores
Materiais
Carbono
Nanoestruturados
CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono
title_full Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono
title_fullStr Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono
title_full_unstemmed Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono
title_sort Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono
author Baccarin, Marina
author_facet Baccarin, Marina
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1431367087412366
dc.contributor.author.fl_str_mv Baccarin, Marina
dc.contributor.advisor1.fl_str_mv Fatibello Filho, Orlando
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9859737944357808
contributor_str_mv Fatibello Filho, Orlando
dc.subject.por.fl_str_mv Sensores
Materiais
Carbono
Nanoestruturados
topic Sensores
Materiais
Carbono
Nanoestruturados
CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA
description In this work are reported the development of new architectures for sensors using carbon nanomaterials. Firstly, the investigation of the nanomaterials reduced graphene oxide (RGO) and carbon black (CB) in chitosan film (CTS) modifying the surface of a glassy carbon electrode (GCE) for the development of new electrochemical sensor is described. The sensor was characterized by using scanning electron microscopy (SEM), ultraviolet spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering and cyclic voltammetry (CV). Using the Nicholson method and the results obtained by CV with the proposed RGO-CB-CTS/GCE, the heterogeneous electron transfer rate constant (k0) of 5.6 × 10−3 cm s−1 was obtained. The proposed electrode was applied for the simultaneous determination of dopamine (DA) (neurotransmitter) and paracetamol (PAR) (analgesic). Employing SWV, DA presented an anodic peak at 0.25 V and PAR at 0.50 V vs. Ag/AgCl (3.0 mol L–1 KCl). The analytical curves obtained were linear in the range from 3.9  10–6 to 3.4  10–5 mol L–1 and between 2.0  10–6 and 1.7  10–5 mol L–1 with detection limits of 2.0  10–8 and 5.3  10–8 mol L–1 for DA and PAR, respectively. The developed sensor presented advantages such as simple preparation, low cost of nanomaterials used, fast response (7 s for each measure). Besides, the sensor was successfully applied in the simultaneous determination of the analytes in synthetic urine samples. The second fabricated sensor was based on the modification of a GCE with nanodiamond (Dnano) within a Poly(allylamine hydrochloride) (PAH) film. The Dnano-PAH/GCE sensor was characterized by Fourier transform infrared spectroscopy and cyclic voltammetry. It was observed a stability of the dispersion and a k0 of 2.0 × 10−2 cm s−1 was obtained using the Nicholson method and the results obtained from CV technique. The developed sensor was applied for determination of catechol (CAT) using differential-pulse Baccarin, M. ix voltammetry (DPV). Under optimal experimental conditions, the anodic peak current was linear in the CAT concentration range of 2.0 × 10−6 to 1.1 × 10−4 mol L−1 with a detection limit of 1.5 × 10−6 mol L−1. The proposed method was applied for the determination of CAT in natural water samples, presenting vantages such as fast response (9 s to carry out one measure), selectivity and simplicity of working electrode fabrication.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-10-20T13:39:39Z
dc.date.available.fl_str_mv 2016-10-20T13:39:39Z
dc.date.issued.fl_str_mv 2016-02-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BACCARIN, Marina. Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono. 2016. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7926.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7926
identifier_str_mv BACCARIN, Marina. Novas arquiteturas para sensores modificados com materiais nanoestruturados de carbono. 2016. Dissertação (Mestrado em Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7926.
url https://repositorio.ufscar.br/handle/ufscar/7926
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química - PPGQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7926/1/DissMBna.pdf
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7926/2/license.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7926/3/DissMBna.pdf.txt
https://{{ getenv "DSPACE_HOST" "repositorio.ufscar.br" }}/bitstream/ufscar/7926/4/DissMBna.pdf.jpg
bitstream.checksum.fl_str_mv aa3df289cd70876ea15262c53880aca3
ae0398b6f8b235e40ad82cba6c50031d
682a9456293f39c26af07d9cc985fed1
8ea121b6678feacd6834ba463c936542
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1767351114274963456