Desenvolvimento e construção de sensor magnetoelástico de pH com eletrônica portátil

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Beltrami, Mateus
Orientador(a): Missell, Frank Patrick
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ucs.br/handle/11338/1259
Resumo: Sensores com material magnetoelástico vêm sendo desenvolvidos pois possibilitam medidas sem contato de fios (wireless). Apresentam variação da frequência de ressonância (redução) quando submetidos a um carregamento de massa. Podem ser empregados para detecção e determinação de grandezas físicas através de instrumentação remota que vem se tornando cada vez mais importante. As grandezas podem ser desde a quantificação de pH até a detecção da presença de microrganismos. Neste trabalho descrevemos um sistema de detecção rápida e wireless de grandezas físicas como pH e a presença de microorganismos. São utilizados como substrato tiras de material magnetoelástico amorfo Metglas 2826MB3. O material foi cortado em tamanhos de 30 mm x 6 mm e 5 mm x 1 mm, através de uma serra de micro corte, sendo parte destas logo em seguida foram revestidas com finas camadas de Cr e Au através de sputtering. Foi desenvolvido um dispositivo portátil com a função de análise de frequência de ressonância das fitas magnetoelásticas. Este dispositivo pode operar completamente de forma autônomo ou em conjunto com computador. Ele é composto de um central de processamento, circuitos auxiliares e interface de entrada e saída de dados. A operação do dispositivo portátil está em expor o material magnetoelástico (transdutor/sensor) a um campo magnético variável com o tempo, que por sua vez responde com uma onda elástica longitudinal que é detectada de forma magnética. Foram realizados ensaios com o transdutor (superfície livre) e também após a aplicação de camadas sensíveis ao pH e bem como a captura de microrganismo. Para os sensores detectores de pH foram utilizadas tiras do transdutor revestidas com Cr e Au sendo nestas aplicada uma camada de cistamina (CYS) para gerar aderência do polímero de pH sintetizado a partir de monómeros de ácido acrílico e acrilato de isooctilo. O sensor de pH foi exposto a uma faixa de pH (1,5 a 7,5) sendo analisado através do dispositivo portátil e comparado com analisador de rede Agilent E5061B. As medidas da frequência de ressonância do sensor de pH apresentaram uma variação de 70 Hz/pH para sensores 30 mm x 5 mm e para sensores de 5 mm x 1 mm foi de 1000 Hz/pH. Também foram realizadas medidas com o transdutor funcionalizado com Poli- L-Lisina para captura de S. cerevisiae. Com a aderência da S. cerevisiae à superfície do sensor, houve uma redução da frequência de ressonância em 531 Hz, que concorda quantitativamente com valores calculados para este carregamento de massa.
id UCS_f565ca93101e29ad531998b964ecdb71
oai_identifier_str oai:repositorio.ucs.br:11338/1259
network_acronym_str UCS
network_name_str Repositório Institucional da UCS
repository_id_str
spelling Beltrami, MateusEly, Mariana RoeschClarke, Thomas Gabriel RosauroKunst, Sandra RaquelGiovaninni Junior, OdilonMissell, Frank Patrick2016-08-09T17:17:16Z2016-08-09T17:17:16Z2016-08-092016-06-27https://repositorio.ucs.br/handle/11338/1259Sensores com material magnetoelástico vêm sendo desenvolvidos pois possibilitam medidas sem contato de fios (wireless). Apresentam variação da frequência de ressonância (redução) quando submetidos a um carregamento de massa. Podem ser empregados para detecção e determinação de grandezas físicas através de instrumentação remota que vem se tornando cada vez mais importante. As grandezas podem ser desde a quantificação de pH até a detecção da presença de microrganismos. Neste trabalho descrevemos um sistema de detecção rápida e wireless de grandezas físicas como pH e a presença de microorganismos. São utilizados como substrato tiras de material magnetoelástico amorfo Metglas 2826MB3. O material foi cortado em tamanhos de 30 mm x 6 mm e 5 mm x 1 mm, através de uma serra de micro corte, sendo parte destas logo em seguida foram revestidas com finas camadas de Cr e Au através de sputtering. Foi desenvolvido um dispositivo portátil com a função de análise de frequência de ressonância das fitas magnetoelásticas. Este dispositivo pode operar completamente de forma autônomo ou em conjunto com computador. Ele é composto de um central de processamento, circuitos auxiliares e interface de entrada e saída de dados. A operação do dispositivo portátil está em expor o material magnetoelástico (transdutor/sensor) a um campo magnético variável com o tempo, que por sua vez responde com uma onda elástica longitudinal que é detectada de forma magnética. Foram realizados ensaios com o transdutor (superfície livre) e também após a aplicação de camadas sensíveis ao pH e bem como a captura de microrganismo. Para os sensores detectores de pH foram utilizadas tiras do transdutor revestidas com Cr e Au sendo nestas aplicada uma camada de cistamina (CYS) para gerar aderência do polímero de pH sintetizado a partir de monómeros de ácido acrílico e acrilato de isooctilo. O sensor de pH foi exposto a uma faixa de pH (1,5 a 7,5) sendo analisado através do dispositivo portátil e comparado com analisador de rede Agilent E5061B. As medidas da frequência de ressonância do sensor de pH apresentaram uma variação de 70 Hz/pH para sensores 30 mm x 5 mm e para sensores de 5 mm x 1 mm foi de 1000 Hz/pH. Também foram realizadas medidas com o transdutor funcionalizado com Poli- L-Lisina para captura de S. cerevisiae. Com a aderência da S. cerevisiae à superfície do sensor, houve uma redução da frequência de ressonância em 531 Hz, que concorda quantitativamente com valores calculados para este carregamento de massa.Sensors with magnetoelastic materials are being developed for possible wireless measurements. They show variation of the resonance frequency (decrease) when subjected to a loading mass. May be employed for detection and determination of physical quantities via remote instrumentation that is becoming increasingly important. These quantities could be the pH of a solution or the detection of the presence of microorganisms. In this work, we describe a rapid and wireless detection system for physical quantities such as pH and the presence of microorganisms. We used as substrates strips of amorphous magnetoelastic material Metglas 2826MB3. The material was cut into strips with sizes of 30 mm x 6 mm and 5 mm x 1 mm, using a micro-dicing saw. Part of these were coated with thin layers of Cr and Au through sputtering. We developed a portable electronic device with the function of determining the resonance frequency of the magnetoelastic strips. This device can operate completely standalone or in conjunction with a computer. It is composed of a central processing, auxiliary circuits and input and output interface of data. The portable device produces a variable magnetic field, which in turn produces a longitudinal elastic wave which is detected magnetically. Tests were carried out with the bare transducer as well as after the application of pH-sensitive layers or material for the capture of microorganisms. For pH sensors we used transducer strips coated with Cr and Au and then applied a layer of cystamine (CYS) to promote adherence to the copolymer of acrylic acid and iso-octyl acrylate. The pH sensor was exposed to a range of pH (1.5 to 7.5) and was measured using the portable device and compared with results from an Agilent E5061B Network Analyzer. The measurements of the resonance frequency of the pH sensor showed a 70 Hz/pH variation for strips of 30 mm x 6 mm and 1000 Hz/pH for strips measuring 5 mm x 1 mm. Measurements were also carried out with the transducer functionalized using poly-l-lysine to capture S. cerevisiae. With the adherence of S. cerevisiae on the sensor surface, there was a reduction of the resonance frequency 531 Hz, which agrees quantitatively with values calculated for mass loading.Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, FAPERGSEletromagnetismoAparelhos e materiais eletrônicospH (Química)ElectromagnetismElectronic apparatus and applianceHydrogen-ion concentrationDesenvolvimento e construção de sensor magnetoelástico de pH com eletrônica portátilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da UCSinstname:Universidade de Caxias do Sul (UCS)instacron:UCSinfo:eu-repo/semantics/openAccessUniversidade de Caxias do Sulhttp://lattes.cnpq.br/1507340316636414BELTRAMI, M.Programa de Pós-Graduação em Engenharia de Processos e TecnologiasGerhardt, Günther Johannes LewczukTEXTDissertacao Mateus Beltrami.pdf.txtDissertacao Mateus Beltrami.pdf.txtExtracted texttext/plain171361https://repositorio.ucs.br/xmlui/bitstream/11338/1259/3/Dissertacao%20Mateus%20Beltrami.pdf.txt66ff1ec85ed7f9b291f943ab21fa184dMD53THUMBNAILDissertacao Mateus Beltrami.pdf.jpgDissertacao Mateus Beltrami.pdf.jpgGenerated Thumbnailimage/jpeg1310https://repositorio.ucs.br/xmlui/bitstream/11338/1259/4/Dissertacao%20Mateus%20Beltrami.pdf.jpg72db421ecd994e5e8313f16a799b7fbfMD54ORIGINALDissertacao Mateus Beltrami.pdfDissertacao Mateus Beltrami.pdfapplication/pdf5990387https://repositorio.ucs.br/xmlui/bitstream/11338/1259/1/Dissertacao%20Mateus%20Beltrami.pdf8b30dc1a304d4ed66593186686b04ee2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucs.br/xmlui/bitstream/11338/1259/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5211338/12592018-08-17 06:26:18.854oai:repositorio.ucs.br:11338/1259Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de Publicaçõeshttp://repositorio.ucs.br/oai/requestopendoar:2018-08-17T06:26:18Repositório Institucional da UCS - Universidade de Caxias do Sul (UCS)false
dc.title.pt_BR.fl_str_mv Desenvolvimento e construção de sensor magnetoelástico de pH com eletrônica portátil
title Desenvolvimento e construção de sensor magnetoelástico de pH com eletrônica portátil
spellingShingle Desenvolvimento e construção de sensor magnetoelástico de pH com eletrônica portátil
Beltrami, Mateus
Eletromagnetismo
Aparelhos e materiais eletrônicos
pH (Química)
Electromagnetism
Electronic apparatus and appliance
Hydrogen-ion concentration
title_short Desenvolvimento e construção de sensor magnetoelástico de pH com eletrônica portátil
title_full Desenvolvimento e construção de sensor magnetoelástico de pH com eletrônica portátil
title_fullStr Desenvolvimento e construção de sensor magnetoelástico de pH com eletrônica portátil
title_full_unstemmed Desenvolvimento e construção de sensor magnetoelástico de pH com eletrônica portátil
title_sort Desenvolvimento e construção de sensor magnetoelástico de pH com eletrônica portátil
author Beltrami, Mateus
author_facet Beltrami, Mateus
author_role author
dc.contributor.other.none.fl_str_mv Ely, Mariana Roesch
Clarke, Thomas Gabriel Rosauro
Kunst, Sandra Raquel
Giovaninni Junior, Odilon
dc.contributor.author.fl_str_mv Beltrami, Mateus
dc.contributor.advisor1.fl_str_mv Missell, Frank Patrick
contributor_str_mv Missell, Frank Patrick
dc.subject.por.fl_str_mv Eletromagnetismo
Aparelhos e materiais eletrônicos
pH (Química)
Electromagnetism
Electronic apparatus and appliance
Hydrogen-ion concentration
topic Eletromagnetismo
Aparelhos e materiais eletrônicos
pH (Química)
Electromagnetism
Electronic apparatus and appliance
Hydrogen-ion concentration
description Sensores com material magnetoelástico vêm sendo desenvolvidos pois possibilitam medidas sem contato de fios (wireless). Apresentam variação da frequência de ressonância (redução) quando submetidos a um carregamento de massa. Podem ser empregados para detecção e determinação de grandezas físicas através de instrumentação remota que vem se tornando cada vez mais importante. As grandezas podem ser desde a quantificação de pH até a detecção da presença de microrganismos. Neste trabalho descrevemos um sistema de detecção rápida e wireless de grandezas físicas como pH e a presença de microorganismos. São utilizados como substrato tiras de material magnetoelástico amorfo Metglas 2826MB3. O material foi cortado em tamanhos de 30 mm x 6 mm e 5 mm x 1 mm, através de uma serra de micro corte, sendo parte destas logo em seguida foram revestidas com finas camadas de Cr e Au através de sputtering. Foi desenvolvido um dispositivo portátil com a função de análise de frequência de ressonância das fitas magnetoelásticas. Este dispositivo pode operar completamente de forma autônomo ou em conjunto com computador. Ele é composto de um central de processamento, circuitos auxiliares e interface de entrada e saída de dados. A operação do dispositivo portátil está em expor o material magnetoelástico (transdutor/sensor) a um campo magnético variável com o tempo, que por sua vez responde com uma onda elástica longitudinal que é detectada de forma magnética. Foram realizados ensaios com o transdutor (superfície livre) e também após a aplicação de camadas sensíveis ao pH e bem como a captura de microrganismo. Para os sensores detectores de pH foram utilizadas tiras do transdutor revestidas com Cr e Au sendo nestas aplicada uma camada de cistamina (CYS) para gerar aderência do polímero de pH sintetizado a partir de monómeros de ácido acrílico e acrilato de isooctilo. O sensor de pH foi exposto a uma faixa de pH (1,5 a 7,5) sendo analisado através do dispositivo portátil e comparado com analisador de rede Agilent E5061B. As medidas da frequência de ressonância do sensor de pH apresentaram uma variação de 70 Hz/pH para sensores 30 mm x 5 mm e para sensores de 5 mm x 1 mm foi de 1000 Hz/pH. Também foram realizadas medidas com o transdutor funcionalizado com Poli- L-Lisina para captura de S. cerevisiae. Com a aderência da S. cerevisiae à superfície do sensor, houve uma redução da frequência de ressonância em 531 Hz, que concorda quantitativamente com valores calculados para este carregamento de massa.
publishDate 2016
dc.date.submitted.none.fl_str_mv 2016-06-27
dc.date.accessioned.fl_str_mv 2016-08-09T17:17:16Z
dc.date.available.fl_str_mv 2016-08-09T17:17:16Z
dc.date.issued.fl_str_mv 2016-08-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ucs.br/handle/11338/1259
url https://repositorio.ucs.br/handle/11338/1259
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UCS
instname:Universidade de Caxias do Sul (UCS)
instacron:UCS
instname_str Universidade de Caxias do Sul (UCS)
instacron_str UCS
institution UCS
reponame_str Repositório Institucional da UCS
collection Repositório Institucional da UCS
bitstream.url.fl_str_mv https://repositorio.ucs.br/xmlui/bitstream/11338/1259/3/Dissertacao%20Mateus%20Beltrami.pdf.txt
https://repositorio.ucs.br/xmlui/bitstream/11338/1259/4/Dissertacao%20Mateus%20Beltrami.pdf.jpg
https://repositorio.ucs.br/xmlui/bitstream/11338/1259/1/Dissertacao%20Mateus%20Beltrami.pdf
https://repositorio.ucs.br/xmlui/bitstream/11338/1259/2/license.txt
bitstream.checksum.fl_str_mv 66ff1ec85ed7f9b291f943ab21fa184d
72db421ecd994e5e8313f16a799b7fbf
8b30dc1a304d4ed66593186686b04ee2
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UCS - Universidade de Caxias do Sul (UCS)
repository.mail.fl_str_mv
_version_ 1798309163532550144