Modelagem matemática da biossorção dos íons cu(II), ni(II) e zn(II) utilizando resíduo da extração do alginato da alga marinha argassum filipendula

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Suzaki, Pedro Yahico Ramos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.uem.br:8080/jspui/handle/1/3658
Resumo: Adsorption has been highlighted as a simple and effective operation in the treatment of industrial effluents, especially in the removal of heavy metals at trace level, in which traditional methods are expensive and/or inefficient. One of the most important factors for the success of this operation is the adequate choice of material used as an adsorbent. In this search for efficient and inexpensive adsorbents, marine algae have received special attention. Studies have revealed that algae has potential in the removal of heavy metals. However, it might not be the best way to use this type of biomass, which is found in almost all Brazilian coast. Algae have a large amount of a commercially value biopolymer (alginate) that can be extracted and used in many types of industries. Thus, the objective of this work was to evaluate the use of the Sargassum filipendula algae residue after the extraction process of the alginate biopolymer. This study was carried out by conducting both batch and fixed bed column adsorption tests of Cu (II), Ni (II) and Zn (II) ions, as well as fitting of mathematical models for representation and comprehension of the process, seeking the identification of the mechanisms that control the mass transfer from liquid to solid phase. The adsorption process of the Cu(II), Ni(II) and Zn(II) ions was influenced by the particle size and also by the operating temperature. The granulometric range with the lowest evaluated particle diameter showed the highest removal capacity for the three evaluated metals. However, as the value was close to that obtained for the granulometric mixture, the latter group was used in the experiments. In this way, all biomass could be used in the tests. With respect to the effect of the temperature, the highest evaluated, (45!C ), resulted in the greater removal capacity. Temperatures of 25 and 35!C led to similar removal capacities obtained, so for energy savings, the temperature of 25!C was used in the subsequent experiments. In the investigation of the residue of alginate extraction of Sargassum filipendila (REA) as a biosorbent in a batch process to remove the Cu(II)-Ni(II) binary system, the Langmuir-Freundlich isotherm model adequately represented the equilibrium of metals in the liquid and solid phases. In the competition for the active sites of the biosorbent material, the Cu(II) ions expressed higher affinity with this biomass than the Ni(II) ions. The removal of Cu(II) ions was little affected by the presence of Ni(II) ions, whereas the presence of Cu (II) ions greatly limited Ni(II) ions removal capacity. The mathematical model of internal mass transfer resistance (RTMI) has adequately described process kinetics, indicating that the internal mass transfer is the rate limiting step of binary adsorption. Studies of adsorption in a fixed bed column were also performed. In the monocomponent assays of the Cu(II), Ni(II) and Zn(II) ions, the equilibrium data were appropriately represented by the Langmuir isotherm model. The highest removal was observed by the Cu(II) ions, followed by the Zn(II) and finally Ni(II) ions. The highest Cu(II) removal efficiency was demonstrated by the analysis of the rupture times, which were higher for the Cu (II) ions and very close to Ni(II) and Zn(II) ions. The mathematical model that considers the internal mass transfer resistance as the limiting step of the adsorption process adequately described the dynamic biosorption behavior in fixed bed columns for all the monocomponent systems evaluated. In the multicomponent adsorption systems the same order of removal capacity was observed: Cu(II) > Zn(II)> Ni(II). Overshoots were detected in some Zn(II) and Ni(II) ions rupture curves, confirming the lower biomass selectivity for these ions. The ternary adsorption dynamics of the Cu(II)-Ni(II)-Zn(II) system, as well as the batch binary system and fixed-bed column monocomponent systems, were satisfactorily described by the RTMI model, suggesting that diffusion also controls this adsorption process. Therefore, due to the predictive capacity in the different adsorption systems evaluated, the mathematical modeling described in this work can be applied as a tool for the analysis and design of the heavy metal adsorption process.
id UEM-10_2edf3a7b68cbb0ec5dd1ad434a210409
oai_identifier_str oai:localhost:1/3658
network_acronym_str UEM-10
network_name_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository_id_str
spelling Modelagem matemática da biossorção dos íons cu(II), ni(II) e zn(II) utilizando resíduo da extração do alginato da alga marinha argassum filipendulaMathematical modeling of cu(ii), ni(ii) and zn(ii) biosorption by residue of alginate extraction from sargassum filipendullaBiossorçãoResíduo de extraçãoAlginatoMetais pesadosModelagemBrasil.BiosorptionAlginate-extraction residueHeavy metalsModelingBrazil.EngenhariasEngenharia QuímicaAdsorption has been highlighted as a simple and effective operation in the treatment of industrial effluents, especially in the removal of heavy metals at trace level, in which traditional methods are expensive and/or inefficient. One of the most important factors for the success of this operation is the adequate choice of material used as an adsorbent. In this search for efficient and inexpensive adsorbents, marine algae have received special attention. Studies have revealed that algae has potential in the removal of heavy metals. However, it might not be the best way to use this type of biomass, which is found in almost all Brazilian coast. Algae have a large amount of a commercially value biopolymer (alginate) that can be extracted and used in many types of industries. Thus, the objective of this work was to evaluate the use of the Sargassum filipendula algae residue after the extraction process of the alginate biopolymer. This study was carried out by conducting both batch and fixed bed column adsorption tests of Cu (II), Ni (II) and Zn (II) ions, as well as fitting of mathematical models for representation and comprehension of the process, seeking the identification of the mechanisms that control the mass transfer from liquid to solid phase. The adsorption process of the Cu(II), Ni(II) and Zn(II) ions was influenced by the particle size and also by the operating temperature. The granulometric range with the lowest evaluated particle diameter showed the highest removal capacity for the three evaluated metals. However, as the value was close to that obtained for the granulometric mixture, the latter group was used in the experiments. In this way, all biomass could be used in the tests. With respect to the effect of the temperature, the highest evaluated, (45!C ), resulted in the greater removal capacity. Temperatures of 25 and 35!C led to similar removal capacities obtained, so for energy savings, the temperature of 25!C was used in the subsequent experiments. In the investigation of the residue of alginate extraction of Sargassum filipendila (REA) as a biosorbent in a batch process to remove the Cu(II)-Ni(II) binary system, the Langmuir-Freundlich isotherm model adequately represented the equilibrium of metals in the liquid and solid phases. In the competition for the active sites of the biosorbent material, the Cu(II) ions expressed higher affinity with this biomass than the Ni(II) ions. The removal of Cu(II) ions was little affected by the presence of Ni(II) ions, whereas the presence of Cu (II) ions greatly limited Ni(II) ions removal capacity. The mathematical model of internal mass transfer resistance (RTMI) has adequately described process kinetics, indicating that the internal mass transfer is the rate limiting step of binary adsorption. Studies of adsorption in a fixed bed column were also performed. In the monocomponent assays of the Cu(II), Ni(II) and Zn(II) ions, the equilibrium data were appropriately represented by the Langmuir isotherm model. The highest removal was observed by the Cu(II) ions, followed by the Zn(II) and finally Ni(II) ions. The highest Cu(II) removal efficiency was demonstrated by the analysis of the rupture times, which were higher for the Cu (II) ions and very close to Ni(II) and Zn(II) ions. The mathematical model that considers the internal mass transfer resistance as the limiting step of the adsorption process adequately described the dynamic biosorption behavior in fixed bed columns for all the monocomponent systems evaluated. In the multicomponent adsorption systems the same order of removal capacity was observed: Cu(II) > Zn(II)> Ni(II). Overshoots were detected in some Zn(II) and Ni(II) ions rupture curves, confirming the lower biomass selectivity for these ions. The ternary adsorption dynamics of the Cu(II)-Ni(II)-Zn(II) system, as well as the batch binary system and fixed-bed column monocomponent systems, were satisfactorily described by the RTMI model, suggesting that diffusion also controls this adsorption process. Therefore, due to the predictive capacity in the different adsorption systems evaluated, the mathematical modeling described in this work can be applied as a tool for the analysis and design of the heavy metal adsorption process.A adsorção tem-se destacado com uma operação simples e eficaz no tratamento de efluentes industriais, sobretudo na remoção de metais pesados a nível de traço, situação na qual os métodos tradicionais mostram-se caros e/ou ineficientes. Um dos fatores mais importantes para o sucesso desta operação é a escolha adequada do material utilizado como adsorvente. Busca-se materiais que além da capacidade de remoção dos íons de interesse sejam abundantes e consequentemente de baixo custo. Nesta procura por adsorventes eficientes e pouco onerosos as algas marinhas têm recebido atenção especial. Estudos revelaram que as algas apresentam potencial na remoção de metais pesados, porém, está não é a melhor forma de aproveitamento deste tipo de biomassa, que se encontra em quase todo litoral brasileiro. As algas possuem grande quantidade de um biopolímero de valor comercial (alginato) que pode ser extraído e utilizado em diversos tipos de indústrias. Assim, este trabalho teve como objetivo avaliar a utilização do resíduo da alga Sargassum filipendula, após o processo de extração do biopolímero alginato. Este estudo se deu por meio da realização de ensaios experimentais de adsorção em batelada e em coluna de leito fixo dos íons metálicos Cu(II), Ni(II) e Zn(II), bem como por ajustes de modelos matemáticos para representação e compreensão do processo, buscando a identificação dos mecanismos que controlam a transferência de massa da fase líquida para sólida. O processo de adsorção dos íons Cu(II), Ni(II) e Zn(II) mostrou-se influenciado pelo tamanho de partícula e também pela temperatura de operação. A faixa granulométrica com o menor diâmetro médio de partícula avaliada apresentou a maior capacidade de remoção para os três metais avaliados. Porém, como o valor esteve próximo do obtido pela utilização de toda a mistura granulométrica, este último grupo foi utilizado nos experimentos subsequentes. Desta forma, toda biomassa pôde ser aproveitada nos ensaios. Com relação ao efeito da temperatura, a maior avaliada, 45!C, resultou na maior capacidade de remoção. As temperaturas de 25 e 35!C corresponderam a capacidades de remoções próximas a máxima obtida, logo, para economia de energia, a temperatura de 25!C foi empregada nos demais experimentos. Na investigação do resíduo da extração do alginato da alga Sargassum filipendila (REA) como biossorvente em sistema batelada para remoção do sistema binário Cu(II)-Ni(II), o modelo de isoterma de Langmuir-Freundlich representou de maneira adequada o equilíbrio dos metais nas fases líquida e sólida. Na competição pelos sítios ativos do material biossorvente, os íons Cu(II) expressaram maior afinidade com esta biomassa do que os íons Ni(II). A remoção dos íons Cu(II) foi pouco afetada pela presença de íons Ni(II), enquanto que a presença dos íons Cu(II) limitou de maneira intensa a capacidade de remoção dos íons Ni(II). O modelo matemático de resistência a transferência de massa interna (RTMI) descreveu de maneira adequada a cinética do processo, indicando a transferência de massa interna como etapa limitante da adsorção binária. Estudos de adsorção em coluna de leito fixo também foram realizados. Nos ensaios monocomponentes dos íons Cu(II), Ni(II) e Zn(II), os dados de equilíbrio foram retratados de maneira apropriada pelo modelo de isoterma de Langmuir. A maior remoção foi observada pelos íons Cu(II), seguida dos íons Zn(II) e finalmente Ni(II). A maior eficiência de remoção dos íons Cu(II) foi comprovada pela análise dos tempos de ruptura (i.e., tempo útil do processo), que foram maiores para os íons Cu(II) e muito próximos para os íons Ni(II) e Zn(II). O modelo matemático que considera a resistência a transferência de massa interna como etapa limitante do processo de adsorção descreveu de forma eficiente o comportamento dinâmico de biossorção em coluna de leito fixo para todos os sistemas monocomponentes avaliados. Nos sistemas de adsorção multicomponente a mesma ordem de capacidade de remoção foi observada: Cu(II) > Zn(II) > Ni(II). Overshoots (i.e., concentrações de saída maiores que na alimentação do leito) foram detectados em algumas curvas de ruptura dos íons Zn(II) e Ni(II), comprovando a menor seletividade da biomassa para estes íons. A dinâmica de adsorção ternária do sistema Cu(II)-Ni(II)-Zn(II), assim como no sistema binário em batelada e nos sistemas monocomponentes em leito fixo, foram descritos de maneira satisfatória pelo modelo RTMI, sugerindo que a difusão interna também controla este processo de adsorção. Portanto, devido a capacidade preditiva nos diversos sistemas de adsorção avaliados, a modelagem matemática descrita neste trabalho se qualifica como ferramenta para análise e projeto do processo de adsorção de metais pesados.1 CD-ROM (116 f.)Universidade Estadual de MaringáBrasilDepartamento de Engenharia QuímicaPrograma de Pós-Graduação em Engenharia QuímicaUEMMaringá, PRCentro de TecnologiaLuiz Mário de Matos JorgeRosângela BergamascoFabiano Bisinella ScheufeleMárcia Regina Fagundes KlenQuelen Letícia ShimabukuSuzaki, Pedro Yahico Ramos2018-04-17T17:39:54Z2018-04-17T17:39:54Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://repositorio.uem.br:8080/jspui/handle/1/3658porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2018-10-15T18:13:03Zoai:localhost:1/3658Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:56:48.385612Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Modelagem matemática da biossorção dos íons cu(II), ni(II) e zn(II) utilizando resíduo da extração do alginato da alga marinha argassum filipendula
Mathematical modeling of cu(ii), ni(ii) and zn(ii) biosorption by residue of alginate extraction from sargassum filipendulla
title Modelagem matemática da biossorção dos íons cu(II), ni(II) e zn(II) utilizando resíduo da extração do alginato da alga marinha argassum filipendula
spellingShingle Modelagem matemática da biossorção dos íons cu(II), ni(II) e zn(II) utilizando resíduo da extração do alginato da alga marinha argassum filipendula
Suzaki, Pedro Yahico Ramos
Biossorção
Resíduo de extração
Alginato
Metais pesados
Modelagem
Brasil.
Biosorption
Alginate-extraction residue
Heavy metals
Modeling
Brazil.
Engenharias
Engenharia Química
title_short Modelagem matemática da biossorção dos íons cu(II), ni(II) e zn(II) utilizando resíduo da extração do alginato da alga marinha argassum filipendula
title_full Modelagem matemática da biossorção dos íons cu(II), ni(II) e zn(II) utilizando resíduo da extração do alginato da alga marinha argassum filipendula
title_fullStr Modelagem matemática da biossorção dos íons cu(II), ni(II) e zn(II) utilizando resíduo da extração do alginato da alga marinha argassum filipendula
title_full_unstemmed Modelagem matemática da biossorção dos íons cu(II), ni(II) e zn(II) utilizando resíduo da extração do alginato da alga marinha argassum filipendula
title_sort Modelagem matemática da biossorção dos íons cu(II), ni(II) e zn(II) utilizando resíduo da extração do alginato da alga marinha argassum filipendula
author Suzaki, Pedro Yahico Ramos
author_facet Suzaki, Pedro Yahico Ramos
author_role author
dc.contributor.none.fl_str_mv Luiz Mário de Matos Jorge
Rosângela Bergamasco
Fabiano Bisinella Scheufele
Márcia Regina Fagundes Klen
Quelen Letícia Shimabuku
dc.contributor.author.fl_str_mv Suzaki, Pedro Yahico Ramos
dc.subject.por.fl_str_mv Biossorção
Resíduo de extração
Alginato
Metais pesados
Modelagem
Brasil.
Biosorption
Alginate-extraction residue
Heavy metals
Modeling
Brazil.
Engenharias
Engenharia Química
topic Biossorção
Resíduo de extração
Alginato
Metais pesados
Modelagem
Brasil.
Biosorption
Alginate-extraction residue
Heavy metals
Modeling
Brazil.
Engenharias
Engenharia Química
description Adsorption has been highlighted as a simple and effective operation in the treatment of industrial effluents, especially in the removal of heavy metals at trace level, in which traditional methods are expensive and/or inefficient. One of the most important factors for the success of this operation is the adequate choice of material used as an adsorbent. In this search for efficient and inexpensive adsorbents, marine algae have received special attention. Studies have revealed that algae has potential in the removal of heavy metals. However, it might not be the best way to use this type of biomass, which is found in almost all Brazilian coast. Algae have a large amount of a commercially value biopolymer (alginate) that can be extracted and used in many types of industries. Thus, the objective of this work was to evaluate the use of the Sargassum filipendula algae residue after the extraction process of the alginate biopolymer. This study was carried out by conducting both batch and fixed bed column adsorption tests of Cu (II), Ni (II) and Zn (II) ions, as well as fitting of mathematical models for representation and comprehension of the process, seeking the identification of the mechanisms that control the mass transfer from liquid to solid phase. The adsorption process of the Cu(II), Ni(II) and Zn(II) ions was influenced by the particle size and also by the operating temperature. The granulometric range with the lowest evaluated particle diameter showed the highest removal capacity for the three evaluated metals. However, as the value was close to that obtained for the granulometric mixture, the latter group was used in the experiments. In this way, all biomass could be used in the tests. With respect to the effect of the temperature, the highest evaluated, (45!C ), resulted in the greater removal capacity. Temperatures of 25 and 35!C led to similar removal capacities obtained, so for energy savings, the temperature of 25!C was used in the subsequent experiments. In the investigation of the residue of alginate extraction of Sargassum filipendila (REA) as a biosorbent in a batch process to remove the Cu(II)-Ni(II) binary system, the Langmuir-Freundlich isotherm model adequately represented the equilibrium of metals in the liquid and solid phases. In the competition for the active sites of the biosorbent material, the Cu(II) ions expressed higher affinity with this biomass than the Ni(II) ions. The removal of Cu(II) ions was little affected by the presence of Ni(II) ions, whereas the presence of Cu (II) ions greatly limited Ni(II) ions removal capacity. The mathematical model of internal mass transfer resistance (RTMI) has adequately described process kinetics, indicating that the internal mass transfer is the rate limiting step of binary adsorption. Studies of adsorption in a fixed bed column were also performed. In the monocomponent assays of the Cu(II), Ni(II) and Zn(II) ions, the equilibrium data were appropriately represented by the Langmuir isotherm model. The highest removal was observed by the Cu(II) ions, followed by the Zn(II) and finally Ni(II) ions. The highest Cu(II) removal efficiency was demonstrated by the analysis of the rupture times, which were higher for the Cu (II) ions and very close to Ni(II) and Zn(II) ions. The mathematical model that considers the internal mass transfer resistance as the limiting step of the adsorption process adequately described the dynamic biosorption behavior in fixed bed columns for all the monocomponent systems evaluated. In the multicomponent adsorption systems the same order of removal capacity was observed: Cu(II) > Zn(II)> Ni(II). Overshoots were detected in some Zn(II) and Ni(II) ions rupture curves, confirming the lower biomass selectivity for these ions. The ternary adsorption dynamics of the Cu(II)-Ni(II)-Zn(II) system, as well as the batch binary system and fixed-bed column monocomponent systems, were satisfactorily described by the RTMI model, suggesting that diffusion also controls this adsorption process. Therefore, due to the predictive capacity in the different adsorption systems evaluated, the mathematical modeling described in this work can be applied as a tool for the analysis and design of the heavy metal adsorption process.
publishDate 2017
dc.date.none.fl_str_mv 2017
2018-04-17T17:39:54Z
2018-04-17T17:39:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.uem.br:8080/jspui/handle/1/3658
url http://repositorio.uem.br:8080/jspui/handle/1/3658
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
collection Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository.name.fl_str_mv Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv
_version_ 1797150434045984768