Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Bueno, Eduardo de Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Lavras
Programa de Pós-Graduação em Recursos Hídricos
UFLA
brasil
Departamento de Engenharia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufla.br/jspui/handle/1/30001
Resumo: Recently, water footprint (WF) has been used as an indicator of the efficiency and sustainability of water resources assigned for hydropower generation. WF of a given hydropower plant is calculated based on the ration between evaporation from the reservoir and the electric energy generated by the facility, and it is known as Gross Water Footprint (GWF); however, WF can also be calculated taking into account the net evaporation, a so-called Net Water Footprint (NWF). This study was carried out at Funil Hydropower Plant (FHP), located in Grande river, southern Minas Gerais, Brazil, using observed weather datasets of two consecutive years, recorded by four meteorological stations installed in the reservoir’s surroundings. It was possible to analyze the intra-annual WF behavior of this facility along with the use of this indicator. In addition, a spatial and temporal wider study was also conducted based on operative data of the plants and weather data over a period of fifteen years for the Parana Hydrograph region (PHR), which accounts 62 hydropower plants belongs to the Brazilian Interconnected System (SIN). This second study was done considering each one plant and in a systemic way for entire PHR. GWF and NWF to FHP was, respectively, equal to 29 and 13 m 3 .GJ -1 , being the later 55% lower. This difference occurred due to the methodology approaches considered in the calculation of GWF and NWF; the later one considers the difference between the evapotranspiration from the flooded area before the reservoir filling and the evaporation from it. The results have demonstrated a reasonable efficiency of the water use for electric energy generation in FHP, since both WFs are low, allowing for characterizing a positive balance between water availability and water demand in the basin where the plant is located. The hydropower plants belonging to the SIN have showed different behaviors for WF especially due to the specificities of each one facility, e.g. installed power, energy generation, and size of the reservoirs. In this sense, WF showed low correlation with both Köppen climate type and the reservoir evaporation, however, a strong dependence of the flooded area and installed power ration (ha.MW-1 ) was observed. Power plants built with a water constant reservoir level showed lower WF than the plants built with reservoirs of regularization (non-constant level), mainly those located in the headwater basins. GWF and NWF of the electric energy generation from PHR were, respectively, of 25 and 11 m 3.GJ -1 , meaning that the most important hydrograph region in the context of hydroelectric generation in Brazil is, on average, lower than the WF observed in other Brazilian facilities or even in the world. Itaipu Power Plant stands out being the second greatest facility in world in terms of installed power and the greatest in the energy production, which leaded to lower WF. Considering now the basins of the PHR as reference, Iguassu Basin showed the lowest WF (from 7 to 1,6 m3 .GJ -1 , respectively, for GWF and NWF) because of the highest installed power and small reservoirs which generated the lowest amount of evaporation. In the other hand, Tiete river basin showed the largest WF among the basins of the PHR (120 and 61 m 3 .GJ -1 , respectively, for GWF and NWF) due to the lowest installed power in relation to the flooded area of the SIN reservoirs in this basin.
id UFLA_12b7e2a535fa5e18fc364b4d9e4223ea
oai_identifier_str oai:localhost:1/30001
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do ParanáWater footprint of hydroelectric power plants of national interliged system in the Paraná hydrographic regionPegada hídricaUsinas hidrelétrica - EvaporaçãoWater footprinHydroelectric power plants - EvaporationConservação de Bacias HidrográficasRecently, water footprint (WF) has been used as an indicator of the efficiency and sustainability of water resources assigned for hydropower generation. WF of a given hydropower plant is calculated based on the ration between evaporation from the reservoir and the electric energy generated by the facility, and it is known as Gross Water Footprint (GWF); however, WF can also be calculated taking into account the net evaporation, a so-called Net Water Footprint (NWF). This study was carried out at Funil Hydropower Plant (FHP), located in Grande river, southern Minas Gerais, Brazil, using observed weather datasets of two consecutive years, recorded by four meteorological stations installed in the reservoir’s surroundings. It was possible to analyze the intra-annual WF behavior of this facility along with the use of this indicator. In addition, a spatial and temporal wider study was also conducted based on operative data of the plants and weather data over a period of fifteen years for the Parana Hydrograph region (PHR), which accounts 62 hydropower plants belongs to the Brazilian Interconnected System (SIN). This second study was done considering each one plant and in a systemic way for entire PHR. GWF and NWF to FHP was, respectively, equal to 29 and 13 m 3 .GJ -1 , being the later 55% lower. This difference occurred due to the methodology approaches considered in the calculation of GWF and NWF; the later one considers the difference between the evapotranspiration from the flooded area before the reservoir filling and the evaporation from it. The results have demonstrated a reasonable efficiency of the water use for electric energy generation in FHP, since both WFs are low, allowing for characterizing a positive balance between water availability and water demand in the basin where the plant is located. The hydropower plants belonging to the SIN have showed different behaviors for WF especially due to the specificities of each one facility, e.g. installed power, energy generation, and size of the reservoirs. In this sense, WF showed low correlation with both Köppen climate type and the reservoir evaporation, however, a strong dependence of the flooded area and installed power ration (ha.MW-1 ) was observed. Power plants built with a water constant reservoir level showed lower WF than the plants built with reservoirs of regularization (non-constant level), mainly those located in the headwater basins. GWF and NWF of the electric energy generation from PHR were, respectively, of 25 and 11 m 3.GJ -1 , meaning that the most important hydrograph region in the context of hydroelectric generation in Brazil is, on average, lower than the WF observed in other Brazilian facilities or even in the world. Itaipu Power Plant stands out being the second greatest facility in world in terms of installed power and the greatest in the energy production, which leaded to lower WF. Considering now the basins of the PHR as reference, Iguassu Basin showed the lowest WF (from 7 to 1,6 m3 .GJ -1 , respectively, for GWF and NWF) because of the highest installed power and small reservoirs which generated the lowest amount of evaporation. In the other hand, Tiete river basin showed the largest WF among the basins of the PHR (120 and 61 m 3 .GJ -1 , respectively, for GWF and NWF) due to the lowest installed power in relation to the flooded area of the SIN reservoirs in this basin.Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Nos últimos anos, a pegada hídrica (PH) tem sido usada como um indicador para análise do uso sustentável e eficiente dos recursos hídricos para geração hidrelétrica. Em geral, a PH de usina hidrelétrica (UHE) é calculada pela relação entre a evaporação do reservatório e a energia gerada pela usina, denominada de PH Bruta, podendo ser obtida também a partir da evaporação líquida do reservatório (PH Líquida). Realizou-se um estudo para a UHE Funil, localizada no rio Grande, Sul de Minas Gerais, a partir de dados observados, durante 2 anos, em estações meteorológicas instaladas no entorno do reservatório, analisando o comportamento intra-anual da PH deste aproveitamento e a sustentabilidade deste indicador. Além disto, um estudo de maior abrangência espacial e temporal foi elaborado, a partir de dados operacionais e meteorológicos de um período de 15 anos obtidos de diferentes fontes, avaliando a PH das 62 UHEs do Sistema Interligado Nacional (SIN), localizadas na Região Hidrográfica do Paraná, individualmente, por aproveitamento e, de forma sistêmica, por bacia hidrográfica. A PH Bruta da UHE Funil foi igual a 29 m³.GJ-1 , enquanto a PH Líquida foi estimada em 13 m³.GJ -1 , portanto 55% menor ao adotar uma metodologia que considera o volume de água que já seria perdido por evapotranspiração da área inundada pelo reservatório. Os resultados indicaram uma eficiência da UHE Funil, no uso da água para geração hidrelétrica, expressa por uma PH baixa e sustentável, considerando o balanço hídrico favorável entre a disponibilidade e a demanda pelos recursos hídricos na bacia onde está localizada a usina. As UHEs do SIN apresentaram PH variáveis entre si, por particularidades dos aproveitamentos (potência instalada, geração de energia, tamanho do reservatório). As PH das UHEs do SIN apresentaram fraca correlação com o tipo de clima e com a evaporação do reservatório e uma forte dependência da relação área inundada por potência instalada (ha.MW -1 ) dos respectivos aproveitamentos. As usinas a fio d’água apresentaram menor PH do que os aproveitamentos com reservatórios de regularização, sobretudo, aqueles localizados nas cabeceiras das bacias. A PH Bruta e Líquida da geração hidrelétrica do SIN, na Região Hidrográfica do Paraná, foi igual, respectivamente, a 25 e 11 m³.GJ-1 , apresentando-se abaixo da média das estimativas de PH de aproveitamentos hidrelétricos no Brasil e no mundo. A produção de energia na Região Hidrográfica do Paraná é a maior do país, com destaque em nível mundial, sobretudo, pela usina de Itaipu, influenciando de forma significativa a redução da PH da geração hidrelétrica. Em termos de bacia hidrográfica, a PH da geração hidrelétrica do SIN, na bacia do rio Iguaçu, foi a menor da Região Hidrográfica do Paraná (7 e 1,6 m³.GJ -1 , respectivamente, para PH Bruta e Líquida), em razão da elevada potência instalada e reservatórios relativamente pequenos nesta bacia. A bacia do rio Tietê apresentou a maior PH para geração hidrelétrica entre as bacias estudadas (120 e 61 m³.GJ -1, respectivamente, para PH Bruta e Líquida), em virtude da baixa capacidade instalada em relação à área total inundada pelos reservatórios do SIN nesta bacia.Universidade Federal de LavrasPrograma de Pós-Graduação em Recursos HídricosUFLAbrasilDepartamento de EngenhariaMello, Carlos Rogério deViola, Marcelo RibeiroSilva, Benedito Cláudio daCoelho, GilbertoYanagi, Silvia de Nazaré MonteiroBueno, Eduardo de Oliveira2018-08-17T15:45:17Z2018-08-17T15:45:17Z2018-08-162018-06-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfBUENO, E. de O. Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná. 2018. 371 p. Tese (Doutorado em Recursos Hídricos)-Universidade Federal de Lavras, Lavras, 2018.http://repositorio.ufla.br/jspui/handle/1/30001porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-04-10T14:37:26Zoai:localhost:1/30001Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-04-10T14:37:26Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná
Water footprint of hydroelectric power plants of national interliged system in the Paraná hydrographic region
title Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná
spellingShingle Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná
Bueno, Eduardo de Oliveira
Pegada hídrica
Usinas hidrelétrica - Evaporação
Water footprin
Hydroelectric power plants - Evaporation
Conservação de Bacias Hidrográficas
title_short Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná
title_full Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná
title_fullStr Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná
title_full_unstemmed Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná
title_sort Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná
author Bueno, Eduardo de Oliveira
author_facet Bueno, Eduardo de Oliveira
author_role author
dc.contributor.none.fl_str_mv Mello, Carlos Rogério de
Viola, Marcelo Ribeiro
Silva, Benedito Cláudio da
Coelho, Gilberto
Yanagi, Silvia de Nazaré Monteiro
dc.contributor.author.fl_str_mv Bueno, Eduardo de Oliveira
dc.subject.por.fl_str_mv Pegada hídrica
Usinas hidrelétrica - Evaporação
Water footprin
Hydroelectric power plants - Evaporation
Conservação de Bacias Hidrográficas
topic Pegada hídrica
Usinas hidrelétrica - Evaporação
Water footprin
Hydroelectric power plants - Evaporation
Conservação de Bacias Hidrográficas
description Recently, water footprint (WF) has been used as an indicator of the efficiency and sustainability of water resources assigned for hydropower generation. WF of a given hydropower plant is calculated based on the ration between evaporation from the reservoir and the electric energy generated by the facility, and it is known as Gross Water Footprint (GWF); however, WF can also be calculated taking into account the net evaporation, a so-called Net Water Footprint (NWF). This study was carried out at Funil Hydropower Plant (FHP), located in Grande river, southern Minas Gerais, Brazil, using observed weather datasets of two consecutive years, recorded by four meteorological stations installed in the reservoir’s surroundings. It was possible to analyze the intra-annual WF behavior of this facility along with the use of this indicator. In addition, a spatial and temporal wider study was also conducted based on operative data of the plants and weather data over a period of fifteen years for the Parana Hydrograph region (PHR), which accounts 62 hydropower plants belongs to the Brazilian Interconnected System (SIN). This second study was done considering each one plant and in a systemic way for entire PHR. GWF and NWF to FHP was, respectively, equal to 29 and 13 m 3 .GJ -1 , being the later 55% lower. This difference occurred due to the methodology approaches considered in the calculation of GWF and NWF; the later one considers the difference between the evapotranspiration from the flooded area before the reservoir filling and the evaporation from it. The results have demonstrated a reasonable efficiency of the water use for electric energy generation in FHP, since both WFs are low, allowing for characterizing a positive balance between water availability and water demand in the basin where the plant is located. The hydropower plants belonging to the SIN have showed different behaviors for WF especially due to the specificities of each one facility, e.g. installed power, energy generation, and size of the reservoirs. In this sense, WF showed low correlation with both Köppen climate type and the reservoir evaporation, however, a strong dependence of the flooded area and installed power ration (ha.MW-1 ) was observed. Power plants built with a water constant reservoir level showed lower WF than the plants built with reservoirs of regularization (non-constant level), mainly those located in the headwater basins. GWF and NWF of the electric energy generation from PHR were, respectively, of 25 and 11 m 3.GJ -1 , meaning that the most important hydrograph region in the context of hydroelectric generation in Brazil is, on average, lower than the WF observed in other Brazilian facilities or even in the world. Itaipu Power Plant stands out being the second greatest facility in world in terms of installed power and the greatest in the energy production, which leaded to lower WF. Considering now the basins of the PHR as reference, Iguassu Basin showed the lowest WF (from 7 to 1,6 m3 .GJ -1 , respectively, for GWF and NWF) because of the highest installed power and small reservoirs which generated the lowest amount of evaporation. In the other hand, Tiete river basin showed the largest WF among the basins of the PHR (120 and 61 m 3 .GJ -1 , respectively, for GWF and NWF) due to the lowest installed power in relation to the flooded area of the SIN reservoirs in this basin.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-17T15:45:17Z
2018-08-17T15:45:17Z
2018-08-16
2018-06-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BUENO, E. de O. Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná. 2018. 371 p. Tese (Doutorado em Recursos Hídricos)-Universidade Federal de Lavras, Lavras, 2018.
http://repositorio.ufla.br/jspui/handle/1/30001
identifier_str_mv BUENO, E. de O. Pegada hídrica das usinas hidrelétricas do sistema interligado nacional na região hidrográfica do Paraná. 2018. 371 p. Tese (Doutorado em Recursos Hídricos)-Universidade Federal de Lavras, Lavras, 2018.
url http://repositorio.ufla.br/jspui/handle/1/30001
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Recursos Hídricos
UFLA
brasil
Departamento de Engenharia
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Recursos Hídricos
UFLA
brasil
Departamento de Engenharia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1784549915795390464