Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Tavares, Camila Assis
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Lavras
Programa de Pós-graduação em Agroquímica
UFLA
brasil
Departamento de Química
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufla.br/jspui/handle/1/56746
Resumo: Alzheimer's disease (AD) affects a large part of the world population, with social and economic impacts. One of the etiological hypotheses proposes that there is a link between AD and type 2 diabetes mellitus (T2DM), even though the mechanism is yet to be unraveled. Studies show that vanadium complexes, such as the BMOV and VO(metf)2·H2O, are potential agents against this neurodegenerative disorder. Thus, Molecular Dynamics (MD) simulations are advantageous for obtaining information about the structures and interactions of these complexes with the biological targets involved in the process, namely AMPK and PTP1B. However, DMs are dependent on the choice of a good force field. Therefore, the present work aims to develop AMBER force field parameters for BMOV and VO(metf)2·H2O, since the literature lacks such information on metal complexes. From quantum-mechanical calculations, the global minimum energy structures were found, with theory level B3LYP/def2-TZVP plus ECP for the vanadium atom. RESP charges and Hessian matrix calculations were performed using the same functional and basis set. The values of force constants were obtained by diagonalizing the Hessian matrix and the Lennard-Jones parameters were assigned based on GAFF, for all atoms except vanadium. In order to validate the developed force fields, MD simulations in vacuum and room temperature were carried out. After that, MDs were performed in order to acquire information about relevant interactions between vanadium complexes and the proteins associated to AD. The new models developed and reported by this work showed to be efficient to describe the molecules under study, when compared to experimental data and to quantum references. Furthermore, great insights about the behavior of the systems, such as relevant residues that interact with BMOV and VO(metf)2·H2O are reported. It is expected that this work may assist to motivate future work involving vanadium complexes for the treatment AD.
id UFLA_57496e81816af5736441994d38dab99b
oai_identifier_str oai:localhost:1/56746
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applicationsSondando interações entre complexos de vanádio e alvos em potencial para o tratamento de Alzheimer: parametrização de um novo campo de força amber e aplicações biológicasComplexos de vanádioCampo de força AMBERDinâmica molecularDocking molecularDoença de AlzheimerVanadium complexesAMBER force fieldMolecular dynamicsMolecular dockingAlzheimer’s diseaseQuímicaAlzheimer's disease (AD) affects a large part of the world population, with social and economic impacts. One of the etiological hypotheses proposes that there is a link between AD and type 2 diabetes mellitus (T2DM), even though the mechanism is yet to be unraveled. Studies show that vanadium complexes, such as the BMOV and VO(metf)2·H2O, are potential agents against this neurodegenerative disorder. Thus, Molecular Dynamics (MD) simulations are advantageous for obtaining information about the structures and interactions of these complexes with the biological targets involved in the process, namely AMPK and PTP1B. However, DMs are dependent on the choice of a good force field. Therefore, the present work aims to develop AMBER force field parameters for BMOV and VO(metf)2·H2O, since the literature lacks such information on metal complexes. From quantum-mechanical calculations, the global minimum energy structures were found, with theory level B3LYP/def2-TZVP plus ECP for the vanadium atom. RESP charges and Hessian matrix calculations were performed using the same functional and basis set. The values of force constants were obtained by diagonalizing the Hessian matrix and the Lennard-Jones parameters were assigned based on GAFF, for all atoms except vanadium. In order to validate the developed force fields, MD simulations in vacuum and room temperature were carried out. After that, MDs were performed in order to acquire information about relevant interactions between vanadium complexes and the proteins associated to AD. The new models developed and reported by this work showed to be efficient to describe the molecules under study, when compared to experimental data and to quantum references. Furthermore, great insights about the behavior of the systems, such as relevant residues that interact with BMOV and VO(metf)2·H2O are reported. It is expected that this work may assist to motivate future work involving vanadium complexes for the treatment AD.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)A doença de Alzheimer (DA) afeta uma grande parte da população mundial, com impactos sociais e econômicos. Uma das hipóteses etiológicas propõe que existe uma ligação entre DA e diabetes mellitus tipo 2 (DMT2), embora o mecanismo ainda não tenha sido desvendado. Estudos mostram que complexos de vanádio, como o BMOV e o VO(metf)2·H2O, são agentes potenciais contra este distúrbio neurodegenerativo. Dessa forma, as simulações de Dinâmica Molecular (DM) são vantajosas para obter informações sobre a estrutura e interação destes complexos com os alvos biológicos envolvidos no processo, nesse caso, AMPK e PTP1B. Entretanto, as DMs dependem da escolha de bons campos de forças. Portanto, o presente trabalho visa desenvolver parâmetros de campo de força AMBER para BMOV e VO(metf)2·H2O, uma vez que a literatura carece de tais informações sobre complexos metálicos. A partir de cálculos quanto-mecânicos, foram encontradas estruturas com mínimos de energia global, empregando o nível de teoria B3LYP/def2-TZVP mais ECP para o átomo de vanádio. As cargas RESP e os cálculos da matriz de Hessiana foram realizados usando os mesmos funcional e função de base. Os valores das constantes de força foram obtidos através da diagonalização da matriz de Hessiana e os parâmetros de Lennard-Jones foram atribuídos com base no GAFF, para todos os átomos, exceto vanádio. A fim de validar os campos de força desenvolvidos, foram realizadas simulações de DM no vácuo e em temperatura ambiente. Depois disso, foram realizados cálculos de DMs a fim de adquirir informações sobre as interações relevantes entre os complexos de vanádio e as proteínas associadas a estas duas condições. Os novos modelos desenvolvidos e relatados por este trabalho se mostraram eficientes para descrever as moléculas sob estudo, quando comparadas aos dados experimentais e as referências quânticas. Além disso, grandes insights sobre o comportamento dos sistemas, tais como resíduos relevantes que interagem com BMOV e VO(metf)2·H2O são relatados. Espera-se que este trabalho possa ajudar a motivar trabalhos futuros envolvendo complexos de vanádio para o tratamento DA.Universidade Federal de LavrasPrograma de Pós-graduação em AgroquímicaUFLAbrasilDepartamento de QuímicaCunha, Elaine Fontes Ferreira daRamalho, Teodorico de CastroAquino, Adélia Justina AguiarBatista, Ana Paula de LimaCaetano, Melissa SoaresCanuto, Sylvio Roberto AcciolyTavares, Camila Assis2023-05-03T18:51:23Z2023-05-03T18:51:23Z2023-05-032023-02-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfTAVARES, C. A. Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications. 2023. 166 p. Tese (Doutorado em Agroquímica)–Universidade Federal de Lavras, Lavras, 2023.http://repositorio.ufla.br/jspui/handle/1/56746engAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-05-04T12:22:47Zoai:localhost:1/56746Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-04T12:22:47Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications
Sondando interações entre complexos de vanádio e alvos em potencial para o tratamento de Alzheimer: parametrização de um novo campo de força amber e aplicações biológicas
title Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications
spellingShingle Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications
Tavares, Camila Assis
Complexos de vanádio
Campo de força AMBER
Dinâmica molecular
Docking molecular
Doença de Alzheimer
Vanadium complexes
AMBER force field
Molecular dynamics
Molecular docking
Alzheimer’s disease
Química
title_short Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications
title_full Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications
title_fullStr Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications
title_full_unstemmed Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications
title_sort Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications
author Tavares, Camila Assis
author_facet Tavares, Camila Assis
author_role author
dc.contributor.none.fl_str_mv Cunha, Elaine Fontes Ferreira da
Ramalho, Teodorico de Castro
Aquino, Adélia Justina Aguiar
Batista, Ana Paula de Lima
Caetano, Melissa Soares
Canuto, Sylvio Roberto Accioly
dc.contributor.author.fl_str_mv Tavares, Camila Assis
dc.subject.por.fl_str_mv Complexos de vanádio
Campo de força AMBER
Dinâmica molecular
Docking molecular
Doença de Alzheimer
Vanadium complexes
AMBER force field
Molecular dynamics
Molecular docking
Alzheimer’s disease
Química
topic Complexos de vanádio
Campo de força AMBER
Dinâmica molecular
Docking molecular
Doença de Alzheimer
Vanadium complexes
AMBER force field
Molecular dynamics
Molecular docking
Alzheimer’s disease
Química
description Alzheimer's disease (AD) affects a large part of the world population, with social and economic impacts. One of the etiological hypotheses proposes that there is a link between AD and type 2 diabetes mellitus (T2DM), even though the mechanism is yet to be unraveled. Studies show that vanadium complexes, such as the BMOV and VO(metf)2·H2O, are potential agents against this neurodegenerative disorder. Thus, Molecular Dynamics (MD) simulations are advantageous for obtaining information about the structures and interactions of these complexes with the biological targets involved in the process, namely AMPK and PTP1B. However, DMs are dependent on the choice of a good force field. Therefore, the present work aims to develop AMBER force field parameters for BMOV and VO(metf)2·H2O, since the literature lacks such information on metal complexes. From quantum-mechanical calculations, the global minimum energy structures were found, with theory level B3LYP/def2-TZVP plus ECP for the vanadium atom. RESP charges and Hessian matrix calculations were performed using the same functional and basis set. The values of force constants were obtained by diagonalizing the Hessian matrix and the Lennard-Jones parameters were assigned based on GAFF, for all atoms except vanadium. In order to validate the developed force fields, MD simulations in vacuum and room temperature were carried out. After that, MDs were performed in order to acquire information about relevant interactions between vanadium complexes and the proteins associated to AD. The new models developed and reported by this work showed to be efficient to describe the molecules under study, when compared to experimental data and to quantum references. Furthermore, great insights about the behavior of the systems, such as relevant residues that interact with BMOV and VO(metf)2·H2O are reported. It is expected that this work may assist to motivate future work involving vanadium complexes for the treatment AD.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-03T18:51:23Z
2023-05-03T18:51:23Z
2023-05-03
2023-02-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv TAVARES, C. A. Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications. 2023. 166 p. Tese (Doutorado em Agroquímica)–Universidade Federal de Lavras, Lavras, 2023.
http://repositorio.ufla.br/jspui/handle/1/56746
identifier_str_mv TAVARES, C. A. Probing interactions between vanadium complexes and potential targets for Alzheimer's treatment: parameterization of a new amber force field and biological applications. 2023. 166 p. Tese (Doutorado em Agroquímica)–Universidade Federal de Lavras, Lavras, 2023.
url http://repositorio.ufla.br/jspui/handle/1/56746
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-graduação em Agroquímica
UFLA
brasil
Departamento de Química
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-graduação em Agroquímica
UFLA
brasil
Departamento de Química
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1784549841886511104