Comportamento fluidodinâmico em lagoas de alta taxa

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: ISMAIL ABDALLAH ISMAIL HASSAN
Orientador(a): Marc Arpad Boncz
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Fundação Universidade Federal de Mato Grosso do Sul
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
CFD
Link de acesso: https://repositorio.ufms.br/handle/123456789/8643
Resumo: The treatment of effluents using microalgae is currently being extensively studied due to several advantages. For instance, it allows for significant biomass production for bioenergy generation and offers greater efficiency in nutrient removal compared to traditional processes. However, this treatment process requires specific conditions for optimal functioning. Among these conditions are heat transfer, oxygen and carbon dioxide exchange, and exposure to sunlight. All of these involve transport processes, emphasizing the need for fluid dynamics optimization. To address this, a study aims to model the fluid dynamics in High Rate Algal Ponds (HRAPs), a type of bioreactor commonly used for microalgae processes. Through computational simulations, this study compares the efficiency of HRAPs with existing models. The goal is to select an authentic model that can contribute to future studies involving other parameters. Additionally, the study investigates the impact of paddlewheel effects on HRAP fluid dynamics and extracts thermodynamic data. Using the FLUENT software and principles of Computational Fluid Dynamics (CFD), a model of an HRAP bioreactor was constructed. The simulation validated the results by comparing them with measurements from a bench-scale HRAP reactor, maintaining close alignment with real-world values. Specifically, when comparing measurements in the reactor with simulations using the Transition SST model (Shear Stress Transport Transition, a transient shear stress transport model), the maximum percentage error was 8.6%. In summary, leveraging computational tools and quantifying the influence of various parameters related to HRAP fluid dynamics allows for the development of a valid model that outperforms existing ones. This model can then be used to optimize reactor configurations
id UFMS_02f1c7019a0167e1dcaf83b1e2343713
oai_identifier_str oai:repositorio.ufms.br:123456789/8643
network_acronym_str UFMS
network_name_str Repositório Institucional da UFMS
repository_id_str
spelling 2024-04-05T19:23:24Z2024-04-05T19:23:24Z2021https://repositorio.ufms.br/handle/123456789/8643The treatment of effluents using microalgae is currently being extensively studied due to several advantages. For instance, it allows for significant biomass production for bioenergy generation and offers greater efficiency in nutrient removal compared to traditional processes. However, this treatment process requires specific conditions for optimal functioning. Among these conditions are heat transfer, oxygen and carbon dioxide exchange, and exposure to sunlight. All of these involve transport processes, emphasizing the need for fluid dynamics optimization. To address this, a study aims to model the fluid dynamics in High Rate Algal Ponds (HRAPs), a type of bioreactor commonly used for microalgae processes. Through computational simulations, this study compares the efficiency of HRAPs with existing models. The goal is to select an authentic model that can contribute to future studies involving other parameters. Additionally, the study investigates the impact of paddlewheel effects on HRAP fluid dynamics and extracts thermodynamic data. Using the FLUENT software and principles of Computational Fluid Dynamics (CFD), a model of an HRAP bioreactor was constructed. The simulation validated the results by comparing them with measurements from a bench-scale HRAP reactor, maintaining close alignment with real-world values. Specifically, when comparing measurements in the reactor with simulations using the Transition SST model (Shear Stress Transport Transition, a transient shear stress transport model), the maximum percentage error was 8.6%. In summary, leveraging computational tools and quantifying the influence of various parameters related to HRAP fluid dynamics allows for the development of a valid model that outperforms existing ones. This model can then be used to optimize reactor configurationsO tratamento de efluentes com microalgas está sendo amplamente estudado atualmente em razão de vantagens, como por exemplo, a grande produção de biomassa para geração de bioenergia, e maior eficiência na remoção de nutrientes, se comparado aos processos tradicionais. Entretanto, o processo necessita de condições adequadas para seu funcionamento. Dentro das condições, temos a transferência de calor, oxigênio e dióxido de carbono, e a entrada de luz solar, sendo estes todos processos de transporte, resultando na necessidade da otimização da sua fluidodinâmica. Logo, é proposto um estudo com o objetivo de modelar a fluidodinâmica em lagoas de alta taxa (High Rate Algal Ponds; HRAPs), um tipo de biorreator costumeiramente usado para processos com microalgas, e analisar sua eficiência, através de simulação computacional, comparando com modelos de estudos existentes. Esta análise deve permitir a seleção de um modelo que pode proporcionar a melhor autenticidade e, como consequência, contribuir para futuros estudos adicionais visando outros parâmetros. Com a modelagem computacional também é possível analisar os efeitos do paddlewheel na fluidodinâmica do HRAP e extrair dados sobre a termodinâmica do mesmo. Fazendo o uso do software FLUENT e aplicando noções da Fluidodinâmica Computacional (Computational Fluid Dynamics, CFD) foi construido um modelo de um biorreator tipo HRAP, simulando a fluidodinâmica dentro do mesmo, validando os resultados com um reator HRAP em escala de bancada, de forma a manter valores próximos a realidade. Comparando as medições neste reator, com as simulações feitas no modelo Transition SST (Shear Stress Transport Transition; modelo de transporte transiente de tensão de cisalhamento), obtémos um erro percentual máximo de 8,6%. Logo, usando a ferramenta computacional e quantificando a influência dos diferentes parâmetros que envolvem a fluidodinâmica do HRAP, é possível construir um modelo válido e com melhor eficiência que modelos existentes, e usar este modelo para otimizar a configuração do reator.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilHRAPCFDComportamento fluidodinâmico em lagoas de alta taxainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMarc Arpad BonczISMAIL ABDALLAH ISMAIL HASSANinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALDissertacao_Ismail_vFinal.pdfDissertacao_Ismail_vFinal.pdfapplication/pdf3061546https://repositorio.ufms.br/bitstream/123456789/8643/-1/Dissertacao_Ismail_vFinal.pdfff28229bb1ae54da65bf8dffb0f8e527MD5-1123456789/86432024-04-05 15:23:26.18oai:repositorio.ufms.br:123456789/8643Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242024-04-05T19:23:26Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false
dc.title.pt_BR.fl_str_mv Comportamento fluidodinâmico em lagoas de alta taxa
title Comportamento fluidodinâmico em lagoas de alta taxa
spellingShingle Comportamento fluidodinâmico em lagoas de alta taxa
ISMAIL ABDALLAH ISMAIL HASSAN
HRAP
CFD
title_short Comportamento fluidodinâmico em lagoas de alta taxa
title_full Comportamento fluidodinâmico em lagoas de alta taxa
title_fullStr Comportamento fluidodinâmico em lagoas de alta taxa
title_full_unstemmed Comportamento fluidodinâmico em lagoas de alta taxa
title_sort Comportamento fluidodinâmico em lagoas de alta taxa
author ISMAIL ABDALLAH ISMAIL HASSAN
author_facet ISMAIL ABDALLAH ISMAIL HASSAN
author_role author
dc.contributor.advisor1.fl_str_mv Marc Arpad Boncz
dc.contributor.author.fl_str_mv ISMAIL ABDALLAH ISMAIL HASSAN
contributor_str_mv Marc Arpad Boncz
dc.subject.por.fl_str_mv HRAP
CFD
topic HRAP
CFD
description The treatment of effluents using microalgae is currently being extensively studied due to several advantages. For instance, it allows for significant biomass production for bioenergy generation and offers greater efficiency in nutrient removal compared to traditional processes. However, this treatment process requires specific conditions for optimal functioning. Among these conditions are heat transfer, oxygen and carbon dioxide exchange, and exposure to sunlight. All of these involve transport processes, emphasizing the need for fluid dynamics optimization. To address this, a study aims to model the fluid dynamics in High Rate Algal Ponds (HRAPs), a type of bioreactor commonly used for microalgae processes. Through computational simulations, this study compares the efficiency of HRAPs with existing models. The goal is to select an authentic model that can contribute to future studies involving other parameters. Additionally, the study investigates the impact of paddlewheel effects on HRAP fluid dynamics and extracts thermodynamic data. Using the FLUENT software and principles of Computational Fluid Dynamics (CFD), a model of an HRAP bioreactor was constructed. The simulation validated the results by comparing them with measurements from a bench-scale HRAP reactor, maintaining close alignment with real-world values. Specifically, when comparing measurements in the reactor with simulations using the Transition SST model (Shear Stress Transport Transition, a transient shear stress transport model), the maximum percentage error was 8.6%. In summary, leveraging computational tools and quantifying the influence of various parameters related to HRAP fluid dynamics allows for the development of a valid model that outperforms existing ones. This model can then be used to optimize reactor configurations
publishDate 2021
dc.date.issued.fl_str_mv 2021
dc.date.accessioned.fl_str_mv 2024-04-05T19:23:24Z
dc.date.available.fl_str_mv 2024-04-05T19:23:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufms.br/handle/123456789/8643
url https://repositorio.ufms.br/handle/123456789/8643
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.publisher.initials.fl_str_mv UFMS
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMS
instname:Universidade Federal de Mato Grosso do Sul (UFMS)
instacron:UFMS
instname_str Universidade Federal de Mato Grosso do Sul (UFMS)
instacron_str UFMS
institution UFMS
reponame_str Repositório Institucional da UFMS
collection Repositório Institucional da UFMS
bitstream.url.fl_str_mv https://repositorio.ufms.br/bitstream/123456789/8643/-1/Dissertacao_Ismail_vFinal.pdf
bitstream.checksum.fl_str_mv ff28229bb1ae54da65bf8dffb0f8e527
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)
repository.mail.fl_str_mv ri.prograd@ufms.br
_version_ 1797953102726299648