Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Coelho, Lia Souza lattes
Orientador(a): Modesto, Elisa Cristina lattes
Banca de defesa: Modesto, Elisa Cristina, Resende, Simone Maria de, Dalm?nico, Gisele Maria Leite, Araujo, Rafael da Silva, Bigansolli, Antonio Renato
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Zootecnia
Departamento: Instituto de Zootecnia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/5972
Resumo: The cashmere fiber is a textile fiber produced only by goats, being considered luxury fiber, with great commercial value. World cashmere production is in the order of 11 to 14 tons per year, with China, Mongolia, Nepal, Australia, Argentina and the United States being the main producers. The Brazilian cashmere fiber produced by different breeds in Brazil was only recognized in 2014. Products with cashmere are considered luxurious and elegant, since they offer excellent isolation; warm in winter and cool in spring and are durable. However, evaluation of Brazilian cashmere fiber and the production of yarn and fabric had not yet been performed. The present study aimed to evaluate the quality and quantity of Brazilian cashmere fibers. Furthermore, produce and evaluate the quality of the first yarn and fabric of Brazilian cashmere. Scanning electron microscopy (SEM), Optical Fiber Diameter Analyzer (OFDA) and Classifiber were used for the analyzes. Brazilian cashmere fibers have a mean fiber length of 22.1 ? 0.1 mm, mean fiber diameter 13.6 ?m, CV mean fiber diameter of the thin fiber 19%, fiber curvature angle 67.7 ? 0.5 ?/mm, scale frequency 6.7 scales /100?m, scale thickness 360 nm, comfort factor 99.6%, mean length 22.1 ? 0.2 mm, tenacity 12.2 (cN/tex). The mean yield cashmere fiber of cleaned and washed was 52.07 ? 1.0% (11.24 - 88.69%). The mean Brazilian cashmere weight was 170.28 g (3.15 - 1886.9 g). The Brazilian cashmere fine fiber is released in late winter in the southern hemisphere. The cashmere fibers were considered of superior quality the commercial fibers. The first commercial-grade Brazilian cashmere yarn and fabric was produced.
id UFRRJ-1_02027f2e72824f5b5aaebe76d414cb9b
oai_identifier_str oai:localhost:jspui/5972
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Modesto, Elisa Cristinahttp://lattes.cnpq.br/4560148363510585Modesto, Elisa CristinaResende, Simone Maria deDalm?nico, Gisele Maria LeiteAraujo, Rafael da SilvaBigansolli, Antonio Renatohttps://orcid.org/0000-0002-8372-691Xhttp://lattes.cnpq.br/9278243045148586Coelho, Lia Souza2022-09-08T17:55:46Z2018-07-16COELHO, Lia Souza. Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos. 2018. 151 f. Tese (Doutorado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2018.https://tede.ufrrj.br/jspui/handle/jspui/5972The cashmere fiber is a textile fiber produced only by goats, being considered luxury fiber, with great commercial value. World cashmere production is in the order of 11 to 14 tons per year, with China, Mongolia, Nepal, Australia, Argentina and the United States being the main producers. The Brazilian cashmere fiber produced by different breeds in Brazil was only recognized in 2014. Products with cashmere are considered luxurious and elegant, since they offer excellent isolation; warm in winter and cool in spring and are durable. However, evaluation of Brazilian cashmere fiber and the production of yarn and fabric had not yet been performed. The present study aimed to evaluate the quality and quantity of Brazilian cashmere fibers. Furthermore, produce and evaluate the quality of the first yarn and fabric of Brazilian cashmere. Scanning electron microscopy (SEM), Optical Fiber Diameter Analyzer (OFDA) and Classifiber were used for the analyzes. Brazilian cashmere fibers have a mean fiber length of 22.1 ? 0.1 mm, mean fiber diameter 13.6 ?m, CV mean fiber diameter of the thin fiber 19%, fiber curvature angle 67.7 ? 0.5 ?/mm, scale frequency 6.7 scales /100?m, scale thickness 360 nm, comfort factor 99.6%, mean length 22.1 ? 0.2 mm, tenacity 12.2 (cN/tex). The mean yield cashmere fiber of cleaned and washed was 52.07 ? 1.0% (11.24 - 88.69%). The mean Brazilian cashmere weight was 170.28 g (3.15 - 1886.9 g). The Brazilian cashmere fine fiber is released in late winter in the southern hemisphere. The cashmere fibers were considered of superior quality the commercial fibers. The first commercial-grade Brazilian cashmere yarn and fabric was produced.A fibra de cashmere ? uma fibra t?xtil produzida somente por caprinos, sendo considerada fibra de luxo, com grande valor comercial. A produ??o mundial de cashmere ? da ordem de 11 a 14 toneladas por ano, sendo a China, Mong?lia, Nepal, Austr?lia, Argentina e Estados Unidos os principais produtores. A fibra de cashmere brasileira produzida por diferentes ra?as no Brasil somente foi reconhecida em 2014. Produtos com cashmere s?o considerados luxuosos e elegantes, pois oferecem ?timo isolamento; quente no inverno e fresco na primavera e s?o dur?veis. Entretanto, avalia??o da fibra de cashmere brasileira e a produ??o de fio e tecido ainda n?o tinham sido realizados. O presente trabalho teve como objetivo avaliar a qualitativamente e quantitativamente as fibras de cashmere brasileira. Al?m disso, produzir e avaliar a qualidade do primeiro fio e tecido de cashmere brasileira. Foi utilizado microsc?pio eletr?nico de varredura (MEV), Optical Fiber Diameter Analyser (OFDA) e Classifiber para as an?lises. As fibras de cashmere brasileira tem comprimento m?dio da fibra fina de 22,1 ? 0,1 mm, di?metro m?dio da fibra fina 13,6 ?m, CV do di?metro m?dio da fibra fina 19%, ?ngulo de curvatura da fibra 67,7 ? 0.5 ?/mm, frequ?ncia da escama 6,7 escamas/100?m, espessura da escama 360 nm, fator de conforto 99,6%, comprimento m?dio 22,1 ? 0.2 mm, tenacidade 12,2 (cN/tex). O rendimento m?dio de fibra de cashmere limpa e lavada foi de 52,07 ? 1,0 % (11,24 ? 88,69%). O peso em massa m?dio de cashmere brasileira foi de 170,28 g (3,15 ? 1886,9 g). A fibra fina de cashmere brasileira tem desprendimento no final do inverno no hemisf?rio Sul. As fibras de cashmere foram consideradas de qualidade superior as fibras comerciais. Foi produzido o primeiro fio e tecido de cashmere brasileira de qualidade comercial.Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-09-08T17:55:46Z No. of bitstreams: 1 2018 - Lia Souza Coelho.pdf: 6452406 bytes, checksum: e5fa1d15e72ec34222105991cd650af7 (MD5)Made available in DSpace on 2022-09-08T17:55:46Z (GMT). No. of bitstreams: 1 2018 - Lia Souza Coelho.pdf: 6452406 bytes, checksum: e5fa1d15e72ec34222105991cd650af7 (MD5) Previous issue date: 2018-07-16CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/70666/2018%20-%20Lia%20Souza%20Coelho.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em ZootecniaUFRRJBrasilInstituto de ZootecniaALLAIN, D.; ROGUET, J. M. Genetic and non-genetic variability of OFDA-medullated fibre contents and other fleece traits in the French Angora goats. Small Ruminant Research, v. 65, n. 3, p. 217?222, 2006. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 6500: Standard Test Method for Diameter of Wool and Other Animal Fibers Using an Optical Fiber Diameter Analyser. p.12. 2000. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D123: Standard Terminology Relating to Textiles. p. 69. 2017. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D1447: Standard Test Method for Length and Length Uniformity of Cotton Fibers by Fibrograph Measurement. p.5. 2000. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D1776 D1776M: Standard Practice for Conditioning and Testing Textiles. 2016. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D25: Standard Specification for Round Timber Piles. 2017. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D2524: Standard Test Method for Breaking Tenacity of Wool Fibers, Flat Bundle Method?1/8-in. (3.2-mm) Gage Length. p.4. 2013. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D3822/D3822M: Standard Test Method for Tensile Properties of Single Textile Fibers. 2014. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D4849: Standard Terminology Related to Yarns and Fibers. p.12. 2013. ANSARI-RENANI, H. R. et al. Cashmere quality of Raeini goats kept by nomads in Iran. Small Ruminant Research, v. 104, n. 1?3, p. 10?16, 2012. ANSARI-RENANI, H. R. Cashmere Quality of Iranian Goat Breeds. Media Peternakan, v. 36, n. 1, p. 1?5, 2013. ANTONINI, M. et al. Effects of year and sampling site on mean fibre diameter of Alashan cashmere goat. Small Ruminant Research, v. 137, p. 71?72, 2016. BAI, J.-Y. et al. Influence of maternal genetic effect on genetic parameter estimates of production traits of cashmere goat. Yi chuan, v. 28, n. 9, p. 1083?1086, 2006. BELDA, M. et al. Climate classification revisited: From K?ppen to Trewartha. Climate Research, v. 59, n. 1, p. 1?13, 2014. CARDELLINO, R. C.; MUELLER, J. Fibre Production and Sheep Breeding in South America. Proc. Assoc. Adv. Anim. Breed. Genet., n. March, p. 366?373., 2009. COELHO, L. S. GONCALVES, N. R. Method of Inclusion with Microwave of Cashmere Fiber for Characterization by Trasnmission Electron Microscopy. 26o Congreso Brasileiro de Microscopia e Microanalise. Anais...2017 COELHO, L. S. Caracter?sticas da capa externa de caprinos em ambiente tropical. [s.l.] Universidade Federal Rural do Rio de Janeiro, 2014. COELHO, L. S. et al. Protocolo para prepara??o de amostras de cashmere para microscopia eletr?nica de transmiss?o. Zootec 2016. Anais...Santa Maria: 2016 COELHO, L. S. et al. Color Patterns of Brazilian Cashmere Fiber. 3rd International Conference on Natural Fibers. Anais...Braga, Portugal: 2017 COELHO, L. S.; GON?ALVES, N. R.; MODESTO, E. . C. M?todo para Infiltra??o de material em resina por micro-ondas para microscopia eletr?nica de transmiss?o, 2017. COELHO, L. S.; MICHEL, R. C.; REZENDE, S. M. MODESTO, E. C. Uso da Difra??o a Laser para Diferencia??o de Fibras T?xteis de Origem Animal. 1o Simp?sio Latinoamericano de Ci?ncia, Tecnologia e Inova??o em Agropecu?ria. Anais...Serop?dica, Brasil: 2015 COELHO, L. S.; MODESTO, E. C. Identification and Characterization of Cashmere in Goats from Northeastern Brazil. 90th Textile Institute World Conference. Anais...Poznan, Polony: 2016 COUCHMAN, R. C. Recognition of cashmere down on the South African boer goat. Small Ruminant Research, v. 1, n. 2, p. 123?126, 1988. CRUZ, T. M. DA et al. Treinamento para reconhecimento de Cashmere no Brasil. Zootec 2017. Anais...Santos, S?o Paulo: 2017 DAI, S. et al. Inbreeding and its effects on fleece traits of Inner Mongolia cashmere goats. Small Ruminant Research, v. 128, p. 50?53, 2015. DIAS, L. R. et al. Uso do Image J para An?lise de Frequ?ncia da Escama de Fibra de Cashmere. 1o Simp?sio Latioamericano de Ci?ncia, Tecnologia e Inova??o em Agropecu?ria. Anais...Serop?dica, Brasil: 2015 EICHHORN, S. J. et al. Handbook of Textile Fibre Structure. [s.l: s.n.]. v. 2 ENCYCLOPEDIA BRITANNICA. Britannica Online Encyclopedia. Dispon?vel em: <https://www.britannica.com/topic/cashmere>. Acesso em: 13 abr. 2018. FEDERAL TRADE COMMISSION. THE WOOL PRODUCTS LABELING ACT OF 1939 - 15 U.S. Code ? 68b - Misbranded wool productsUnited StatesTHE WOOL PRODUCTS LABELING ACT OF 1939, , 1939. Dispon?vel em: <https://www.ftc.gov/system/files/documents/public_statements/674191/194607_freer_the_wool_products_labeling_act_of_1939.pdf> FRANCK, R. Silk, mohair, cashmere and other luxury fibre. [s.l: s.n.]. v. 53 FRANK, E. N. et al. Sources of variation in fibre production and quality traits source of variation in down-bearing Patagonian goats and implications for developing a cashmere industry. Small Ruminant Research, v. 150, p. 60?69, 1 maio 2017. GARNSWORTHY, R. K. et al. Identification of the physical stimulus and the neural basis of fabric-evoked prickle. J Neurophysiol, v. 59, n. 4, p. 1083?1097, 1988. GURKAN UNAL, P.; ATAV, R. Determination of the relationship between fiber characteristics and felting tendency of luxury fibers from various origins. Textile Research Journal, n. 13, p. 004051751668528, 2017. HEBERT, J. J.; BOYLSTON, E. K.; THIBODEAUX, D. P. Anatomy of a Nep. Textile Research Journal, v. 58, n. 7, p. 380?382, 1988. HOTALING, N. A. et al. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials, v. 61, p. 327?338, 2015. HUNTER, L. MOHAIR: A REVIEW OF ITS PROPERTIES, PROCESSING AND APPLICATIONS. [s.l.] Division of Textile Technology, 1993. I?IGUEZ, L. et al. Characterization of mohair and cashmere in regions of Kazakhstan, Kyrgyzstan and Uzbekistan. Small Ruminant Research, v. 120, n. 2?3, p. 209?218, 1 ago. 2014. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 17751-2 Textiles ? Quantitative analysis of cashmere, wool, other specialty animal fibers and their blends ? Part 2: Scanning electron microscopy method. 2016. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 5079: Textile fibres -- Determination of breaking force and elongation at break of individual fibres. p. 6. 1995. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 6889: Surface active agents ? Determination of interfacial tension by drawing up liquid films. p.10. 1986. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO/IEC 17025: General requirements for the competence of testing and calibration laboratories. 2017. INTERNATIONAL WOOL TEXTILE ORGANISATION. DTM-5: Method of Determining Wool Fibre Length Distribution of Fibres from Yarns or Fabrics Using a Single Fibre Length Measuring Machine. 1997. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-12: Measurement of the Mean and Distribution of Fibre Diameter Using the Sirolan-Laserscan Fibre Diameter Analyser. 2012. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-16: Method of test for wool fibre length using a wira fibre diagram machine. 1967. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-17: Determination of Fibre Length and Distribution Parameters. 2011. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-47: Measurement of the Mean and Distribution of Fibre Diameter of Wool using an Optical Fibre Diameter Analyser (OFDA). 2013. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-58: Scanning Electron Microscopic Analysis of Speciality Fibres and Sheep?s Wool and their Blends. 2000. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-6: Method of Test for the Determination of the Mean Diameter of Wool Fibres in Combed Sliver using the Airflow Apparatus. 2013. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-8: Method of Determining Fibre Diameter Distribution Parameters and Percentage of Medullated Fibres in Wool and other Animal Fibres by the Projection Microscope. 1997. KIM, Y.; KIM, T.; CHOI, H.-M. Qualitative Identification of Cashmere and Yak Fibers by Protein Fingerprint Analysis Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Industrial & Engineering Chemistry Research, v. 52, n. 16, p. 5563?5571, 24 abr. 2013. KOZ?OWSKI, R. M. Handbook of natural fibres Volume 1: Types, properties and factors affecting breeding and cultivation. [s.l.] The Textile Institute, 2012. LANARI, M. R. et al. Razas locales y fibras caprinas, bases para un desarrollo rural del norte de la Patagonia Argentina. Animal Genetic Resources Information, v. 45, n. March 2014, p. 55, 2009. LI, L.; JIA, G.; ZHOU, W. Effect of yarn properties on the pilling of cashmere knitted fabric. Fibres and Textiles in Eastern Europe, v. 77, n. 6, p. 76?79, 2009. MCGREGOR, B. Softness Attributes of Australian CashmereDepartment of Primary Industries. [s.l: s.n.]. MCGREGOR, B. A. Effects of different nutritional regimens on the productivity of australian cashmere goats and the partitioning of nutrients between cashmere and hair growth. Australian Journal of Experimental Agriculture, v. 28, n. 4, p. 459?467, 1988. MCGREGOR, B. A. Cashmere fibre crimp, crimp form and fibre curvature. International Journal of Sheep and Wool Science, v. 55, n. 1, 2007b. MCGREGOR, B. A. Production , properties and processing of American bison ( Bison bison ) wool grown in southern Australia. p. 431?435, 2012. MCGREGOR, B. A. Weathering, fibre strength and colour properties of processed white cashmere. Journal of the Textile Institute, v. 107, n. 9, p. 1193?1202, 2016. MCGREGOR, B. A. Physical, chemical, and tensile properties of cashmere, mohair, alpaca, and other rare animal fibers. In: BUNSELL, A. R. (Ed.). . Handbook of Properties of Textile and Technical Fibres. Second Edi ed. [s.l.] Mathew Deans, 2018. p. 1033. MCGREGOR, B. A.; AN, M.; JIANG, Y. Fleece metrology of Liaoning cashmere goats. Small Ruminant Research, v. 4, n. 1, p. 61?71, 1991. MCGREGOR, B. A.; BUTLER, K. L. Determinants of cashmere production: The contribution of fleece measurements and animal growth on farms. Small Ruminant Research, v. 78, n. 1?3, p. 96?105, 2008a. MCGREGOR, B. A.; BUTLER, K. L. The effects of cashmere attributes on the efficiency of dehairing and dehaired cashmere length. Textile Research Journal, v. 78, n. 6, p. 486?496, 2008b. MCGREGOR, B. A.; BUTLER, K. L. Cashmere production and fleece attributes associated with farm of origin, age and sex of goat in Australia. Australian Journal of Experimental Agriculture, v. 48, n. 8, p. 1090?1098, 2008c. MCGREGOR, B. A.; BUTLER, K. L. Implications to fleece evaluation derived from sources of variation contributing to cashmere fibre curvature. Small Ruminant Research, v. 81, n. 1, p. 1?7, 2009. MCGREGOR, B. A.; KERVEN, C.; TOIGONBAEV, S. Sources of variation contributing to production and quality attributes of Kyrgyz cashmere in Osh and Naryn provinces: Implications for industry development. Small Ruminant Research, v. 84, n. 1?3, p. 89?99, 2009. MCGREGOR, B. A.; KERVEN, C.; TOIGONBAEV, S. Sources of variation affecting cashmere grown in the Pamir mountain districts of Tajikistan and implications for industry development. Small Ruminant Research, v. 99, n. 1, p. 7?15, 2011. MCGREGOR, B. A.; LIU, X. Cuticle and cortical cell morphology and the ellipticity of cashmere are affected by nutrition of goats. The Journal of The Textile Institute, v. 108, n. 10, p. 1739?1746, 2017. MCGREGOR, B. A.; POSTLE, R. Processing and quality of cashmere tops for ultrafine wool worsted blend fabrics. International Journal of Clothing Science and Technology, v. 16, n. 1/2, p. 119?131, 2004a. MCGREGOR, B. A.; POSTLE, R. Softness and other fibre attributes of commercial cashmere textiles from China and other origins of production. 83rd World Conferency. Anais...Shanghai: 2004b MCGREGOR, B. A.; POSTLE, R. Worsted Cashmere Top and Yarns Blended with Low or High Curvature Superfine Merino Wool. Textile Research Journal, v. 77, n. 10, p. 792?803, 2007a. MCGREGOR, B. A.; POSTLE, R. Worsted Cashmere Top and Yarns Blended with Low or High Curvature Superfine Merino Wool. Textile Research Journal, v. 77, n. 10, p. 792?803, 2007b. MCGREGOR, B. A.; POSTLE, R. Mechanical Properties of Cashmere Single Jersey Knitted Fabrics Blended with High and Low Crimp Superfine Merino Wool. Textile Research Journal, v. 78, n. 5, p. 399?411, 2008. MCGREGOR, B. A.; POSTLE, R. Wear Attributes of Cashmere Single Jersey Knitted Fabrics Blended with High and Low Crimp Superfine Merino Wool. Textile Research Journal, v. 79, n. 10, p. 876?887, 2009. MCGREGOR, B. A.; QUISPE PE?A, E. C. Cuticle and cortical cell morphology of alpaca and other rare animal fibres. Journal of the Textile Institute, v. 5000, n. September, p. 1?8, 2017. MENKART, J.; DETENBECK, J. C. The Significance of Wool Fiber Crimp Part I: A Study on the Worsted System. Textile Research Journal, v. 27, n. 9, p. 665?689, 1957. MORTON, W. E.; HEARLE, J. W. S. Physical Properties of Textile Fibres: Fourth Edition. [s.l: s.n.]. MUELLER, J. P. et al. Implementation of a cashmere goat breeding program amongst nomads in Southern Iran. Small Ruminant Research, v. 129, p. 69?76, 2015. NAEBE, M. et al. Associations between the physiological basis of fabric-evoked prickle, fiber and yarn characteristics and the Wool ComfortMeter value. Textile Research Journal, v. 85, n. 11, p. 1122?1130, 2015. NAYLOR, G. R. S. THE ROLE OF COARSE FIBERS IN FABRIC PRICKLE USING BLENDED ACRYLIC FIBERS OF DIFFERENT DIAMETERS. Wool Technology and Sheep Breeding, v. 40, n. 1, p. 14?18, 1992. NUNES DA SILVA, E. M. et al. AVALIA??O DA ADAPTABILIDADE DE CAPRINOS EX?TICOS E NATIVOS NO SEMI-?RIDO PARAIBANO Evaluation of the adaptability of goats exotic and native of the semi-arid of Paraiba. Ci?nc. agrotec., Lavras, v. 30, n. 3, p. 516?521, 2006. OHASHI, S. et al. Identification of Cashmere and Other Animal Hair Fibers in Textiles by MALDI-TOF Mass Spectrometry. Journal of Fiber Science and Technology, v. 70, n. 5, p. 105?108, 2014. ONAL, L.; KORKMAZ, M.; TUTAK, M. Relations between the characteristics of Angora rabbit fibre. Fibers and Polymers, v. 8, n. 2, p. 198?204, 2007. ORIGIN PRO 9.0 Origin (OriginLab, Northampton, MA) PALLOTTI, S. et al. Variability of fibre quality on Chinese Alashan Left Banner White Cashmere goat. Italian Journal of Animal Science, v. 17, n. 1, p. 53?56, 2018. PAULING, L.; COREY, R. B. Two hydrogen-bonded spiral configurations of the polypeptide chainJournal of the American Chemical Society, 1950. POPESCU, C.; H?CKER, H. Hair--the most sophisticated biological composite material. Chemical Society Reviews, v. 36, n. 8, p. 1282?1291, 2007. QIN, X. et al. Research on knitted fabric properties of yak cashmere and cotton blend yarns. Fibres and Textiles in Eastern Europe, v. 25, n. 4, p. 31?35, 2017. RAFAT, S. A. et al. Divergent selection for total fleece weight in Angora rabbits: Correlated responses in wool characteristics. Livestock Science, v. 113, n. 1, p. 8?13, 2008. RANTASALO, S. Sami Rantasalo Propagation of Flexural Properties From Fibre To Fabric. n. May, 2014. SCHNEIDER, G. S. Market indicators. Dispon?vel em: <http://www.gschneider.com/market-reports/viewreports.php?id=7930>. Acesso em: 16 abr. 2018. SIRGHIE, C.; KOZ?OWSKI, R. M.; ROSKWITALSKI, Z. Cotton fibres. In: Handbook of Natural Fibres. [s.l: s.n.]. v. 1p. 11?23. SMITH, I. D.; CLARKE, W. H.; TURNER, H. N. The potential of feral goats in Australia for cashmere production. Journal of the Australian Institute of Agricultural Science, v. 39, n. 2, p. 128?131, 1973. SOARES, R. et al. Mass spectrometry and animal science: Protein identification strategies and particularities of farm animal species. Journal of Proteomics, v. 75, n. 14, p. 4190?4206, 2012. TEERINK, B. J. Hair of West-European Mammals. [s.l: s.n.]. VAN DER WESTHUYSEN, J. M. Marketing goat fibres. Small Ruminant Research. Anais...2005 VINEIS, C. et al. Validation of UPLC/ESI-MS method used for the identification and quantification of wool, cashmere and yak fibres. Journal of the Textile Institute, v. 108, n. 12, p. 2180?2183, 2017. VINEIS, C.; ALUIGI, A.; TONIN, C. Morphology and thermal behaviour of textile fibres from the hair of domestic and wild goat species. Autex Research Journal, v. 8, n. 3, p. 68?71, 2008. WANI, S. A.; SHAHEEN, F. A.; WANI, M. H. Cashmere producing smallholder nomads of himalaya: Survival challenges of a system. Small Ruminant Research, n. July, p. 0?1, 2017. WILDMAN, A. B. The Identification of Animal Fibres. Journal of the Forensic Science Society, v. 1, n. 2, p. 115?119, 1961. WORTMANN, F. J.; PHAN, K. H. Cuticle Scale Heights of Wool and Specialty Fibers and Their Changes Due to Textile Processing. Textile Research Journal, v. 69, n. 2, p. 139?144, 1999. WTIN. Wool Market Report. United Kingdom: [s.n.]. YANG, G., FU, Y., HONG, X., & WANG, C. Discussion on cashmere fiber identification technique by SEM and LM. Proceedings of the 3rd International Cashmere Determination Technique Symposium. Anais...China: 2005 YOKOHAMA, M. et al. Proteome analysis of cashmere. Animal Science Journal, v. 75, n. 5, p. 401?405, 2004. ZHOU, H. M. et al. Effects of non-genetic factors on production traits of Inner Mongolia cashmere goats in China. Small Ruminant Research, v. 47, n. 1, p. 85?89, 2003. ???. CN 104726982 A ?????????????China, 2015.Fibras NaturaisFibras animaisQualidadeFibras finasPropriedades f?sicasNatural fibersAnimal fibersQualityUndercoatPhysical propertiesZootecniaAvalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinosQualitative and quantitative evaluation of brazilian cashmere: innovation in goat productioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2018 - Lia Souza Coelho.pdf.jpg2018 - Lia Souza Coelho.pdf.jpgimage/jpeg3221http://localhost:8080/tede/bitstream/jspui/5972/4/2018+-+Lia+Souza+Coelho.pdf.jpgc74e37778c90869962ff59a5335dadbfMD54TEXT2018 - Lia Souza Coelho.pdf.txt2018 - Lia Souza Coelho.pdf.txttext/plain228875http://localhost:8080/tede/bitstream/jspui/5972/3/2018+-+Lia+Souza+Coelho.pdf.txte0ee99686a051cbd641c4efffa61c85bMD53ORIGINAL2018 - Lia Souza Coelho.pdf2018 - Lia Souza Coelho.pdfapplication/pdf6452406http://localhost:8080/tede/bitstream/jspui/5972/2/2018+-+Lia+Souza+Coelho.pdfe5fa1d15e72ec34222105991cd650af7MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/5972/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/59722022-09-09 01:00:17.914oai:localhost:jspui/5972Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-09-09T04:00:17Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos
dc.title.alternative.eng.fl_str_mv Qualitative and quantitative evaluation of brazilian cashmere: innovation in goat production
title Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos
spellingShingle Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos
Coelho, Lia Souza
Fibras Naturais
Fibras animais
Qualidade
Fibras finas
Propriedades f?sicas
Natural fibers
Animal fibers
Quality
Undercoat
Physical properties
Zootecnia
title_short Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos
title_full Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos
title_fullStr Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos
title_full_unstemmed Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos
title_sort Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos
author Coelho, Lia Souza
author_facet Coelho, Lia Souza
author_role author
dc.contributor.advisor1.fl_str_mv Modesto, Elisa Cristina
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4560148363510585
dc.contributor.referee1.fl_str_mv Modesto, Elisa Cristina
dc.contributor.referee2.fl_str_mv Resende, Simone Maria de
dc.contributor.referee3.fl_str_mv Dalm?nico, Gisele Maria Leite
dc.contributor.referee4.fl_str_mv Araujo, Rafael da Silva
dc.contributor.referee5.fl_str_mv Bigansolli, Antonio Renato
dc.contributor.authorID.fl_str_mv https://orcid.org/0000-0002-8372-691X
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9278243045148586
dc.contributor.author.fl_str_mv Coelho, Lia Souza
contributor_str_mv Modesto, Elisa Cristina
Modesto, Elisa Cristina
Resende, Simone Maria de
Dalm?nico, Gisele Maria Leite
Araujo, Rafael da Silva
Bigansolli, Antonio Renato
dc.subject.por.fl_str_mv Fibras Naturais
Fibras animais
Qualidade
Fibras finas
Propriedades f?sicas
topic Fibras Naturais
Fibras animais
Qualidade
Fibras finas
Propriedades f?sicas
Natural fibers
Animal fibers
Quality
Undercoat
Physical properties
Zootecnia
dc.subject.eng.fl_str_mv Natural fibers
Animal fibers
Quality
Undercoat
Physical properties
dc.subject.cnpq.fl_str_mv Zootecnia
description The cashmere fiber is a textile fiber produced only by goats, being considered luxury fiber, with great commercial value. World cashmere production is in the order of 11 to 14 tons per year, with China, Mongolia, Nepal, Australia, Argentina and the United States being the main producers. The Brazilian cashmere fiber produced by different breeds in Brazil was only recognized in 2014. Products with cashmere are considered luxurious and elegant, since they offer excellent isolation; warm in winter and cool in spring and are durable. However, evaluation of Brazilian cashmere fiber and the production of yarn and fabric had not yet been performed. The present study aimed to evaluate the quality and quantity of Brazilian cashmere fibers. Furthermore, produce and evaluate the quality of the first yarn and fabric of Brazilian cashmere. Scanning electron microscopy (SEM), Optical Fiber Diameter Analyzer (OFDA) and Classifiber were used for the analyzes. Brazilian cashmere fibers have a mean fiber length of 22.1 ? 0.1 mm, mean fiber diameter 13.6 ?m, CV mean fiber diameter of the thin fiber 19%, fiber curvature angle 67.7 ? 0.5 ?/mm, scale frequency 6.7 scales /100?m, scale thickness 360 nm, comfort factor 99.6%, mean length 22.1 ? 0.2 mm, tenacity 12.2 (cN/tex). The mean yield cashmere fiber of cleaned and washed was 52.07 ? 1.0% (11.24 - 88.69%). The mean Brazilian cashmere weight was 170.28 g (3.15 - 1886.9 g). The Brazilian cashmere fine fiber is released in late winter in the southern hemisphere. The cashmere fibers were considered of superior quality the commercial fibers. The first commercial-grade Brazilian cashmere yarn and fabric was produced.
publishDate 2018
dc.date.issued.fl_str_mv 2018-07-16
dc.date.accessioned.fl_str_mv 2022-09-08T17:55:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COELHO, Lia Souza. Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos. 2018. 151 f. Tese (Doutorado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2018.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/5972
identifier_str_mv COELHO, Lia Souza. Avalia??o qualitativa e quantitativa de cashmere brasileira: inova??o em produ??o de caprinos. 2018. 151 f. Tese (Doutorado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2018.
url https://tede.ufrrj.br/jspui/handle/jspui/5972
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ALLAIN, D.; ROGUET, J. M. Genetic and non-genetic variability of OFDA-medullated fibre contents and other fleece traits in the French Angora goats. Small Ruminant Research, v. 65, n. 3, p. 217?222, 2006. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 6500: Standard Test Method for Diameter of Wool and Other Animal Fibers Using an Optical Fiber Diameter Analyser. p.12. 2000. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D123: Standard Terminology Relating to Textiles. p. 69. 2017. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D1447: Standard Test Method for Length and Length Uniformity of Cotton Fibers by Fibrograph Measurement. p.5. 2000. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D1776 D1776M: Standard Practice for Conditioning and Testing Textiles. 2016. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D25: Standard Specification for Round Timber Piles. 2017. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D2524: Standard Test Method for Breaking Tenacity of Wool Fibers, Flat Bundle Method?1/8-in. (3.2-mm) Gage Length. p.4. 2013. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D3822/D3822M: Standard Test Method for Tensile Properties of Single Textile Fibers. 2014. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D4849: Standard Terminology Related to Yarns and Fibers. p.12. 2013. ANSARI-RENANI, H. R. et al. Cashmere quality of Raeini goats kept by nomads in Iran. Small Ruminant Research, v. 104, n. 1?3, p. 10?16, 2012. ANSARI-RENANI, H. R. Cashmere Quality of Iranian Goat Breeds. Media Peternakan, v. 36, n. 1, p. 1?5, 2013. ANTONINI, M. et al. Effects of year and sampling site on mean fibre diameter of Alashan cashmere goat. Small Ruminant Research, v. 137, p. 71?72, 2016. BAI, J.-Y. et al. Influence of maternal genetic effect on genetic parameter estimates of production traits of cashmere goat. Yi chuan, v. 28, n. 9, p. 1083?1086, 2006. BELDA, M. et al. Climate classification revisited: From K?ppen to Trewartha. Climate Research, v. 59, n. 1, p. 1?13, 2014. CARDELLINO, R. C.; MUELLER, J. Fibre Production and Sheep Breeding in South America. Proc. Assoc. Adv. Anim. Breed. Genet., n. March, p. 366?373., 2009. COELHO, L. S. GONCALVES, N. R. Method of Inclusion with Microwave of Cashmere Fiber for Characterization by Trasnmission Electron Microscopy. 26o Congreso Brasileiro de Microscopia e Microanalise. Anais...2017 COELHO, L. S. Caracter?sticas da capa externa de caprinos em ambiente tropical. [s.l.] Universidade Federal Rural do Rio de Janeiro, 2014. COELHO, L. S. et al. Protocolo para prepara??o de amostras de cashmere para microscopia eletr?nica de transmiss?o. Zootec 2016. Anais...Santa Maria: 2016 COELHO, L. S. et al. Color Patterns of Brazilian Cashmere Fiber. 3rd International Conference on Natural Fibers. Anais...Braga, Portugal: 2017 COELHO, L. S.; GON?ALVES, N. R.; MODESTO, E. . C. M?todo para Infiltra??o de material em resina por micro-ondas para microscopia eletr?nica de transmiss?o, 2017. COELHO, L. S.; MICHEL, R. C.; REZENDE, S. M. MODESTO, E. C. Uso da Difra??o a Laser para Diferencia??o de Fibras T?xteis de Origem Animal. 1o Simp?sio Latinoamericano de Ci?ncia, Tecnologia e Inova??o em Agropecu?ria. Anais...Serop?dica, Brasil: 2015 COELHO, L. S.; MODESTO, E. C. Identification and Characterization of Cashmere in Goats from Northeastern Brazil. 90th Textile Institute World Conference. Anais...Poznan, Polony: 2016 COUCHMAN, R. C. Recognition of cashmere down on the South African boer goat. Small Ruminant Research, v. 1, n. 2, p. 123?126, 1988. CRUZ, T. M. DA et al. Treinamento para reconhecimento de Cashmere no Brasil. Zootec 2017. Anais...Santos, S?o Paulo: 2017 DAI, S. et al. Inbreeding and its effects on fleece traits of Inner Mongolia cashmere goats. Small Ruminant Research, v. 128, p. 50?53, 2015. DIAS, L. R. et al. Uso do Image J para An?lise de Frequ?ncia da Escama de Fibra de Cashmere. 1o Simp?sio Latioamericano de Ci?ncia, Tecnologia e Inova??o em Agropecu?ria. Anais...Serop?dica, Brasil: 2015 EICHHORN, S. J. et al. Handbook of Textile Fibre Structure. [s.l: s.n.]. v. 2 ENCYCLOPEDIA BRITANNICA. Britannica Online Encyclopedia. Dispon?vel em: <https://www.britannica.com/topic/cashmere>. Acesso em: 13 abr. 2018. FEDERAL TRADE COMMISSION. THE WOOL PRODUCTS LABELING ACT OF 1939 - 15 U.S. Code ? 68b - Misbranded wool productsUnited StatesTHE WOOL PRODUCTS LABELING ACT OF 1939, , 1939. Dispon?vel em: <https://www.ftc.gov/system/files/documents/public_statements/674191/194607_freer_the_wool_products_labeling_act_of_1939.pdf> FRANCK, R. Silk, mohair, cashmere and other luxury fibre. [s.l: s.n.]. v. 53 FRANK, E. N. et al. Sources of variation in fibre production and quality traits source of variation in down-bearing Patagonian goats and implications for developing a cashmere industry. Small Ruminant Research, v. 150, p. 60?69, 1 maio 2017. GARNSWORTHY, R. K. et al. Identification of the physical stimulus and the neural basis of fabric-evoked prickle. J Neurophysiol, v. 59, n. 4, p. 1083?1097, 1988. GURKAN UNAL, P.; ATAV, R. Determination of the relationship between fiber characteristics and felting tendency of luxury fibers from various origins. Textile Research Journal, n. 13, p. 004051751668528, 2017. HEBERT, J. J.; BOYLSTON, E. K.; THIBODEAUX, D. P. Anatomy of a Nep. Textile Research Journal, v. 58, n. 7, p. 380?382, 1988. HOTALING, N. A. et al. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials, v. 61, p. 327?338, 2015. HUNTER, L. MOHAIR: A REVIEW OF ITS PROPERTIES, PROCESSING AND APPLICATIONS. [s.l.] Division of Textile Technology, 1993. I?IGUEZ, L. et al. Characterization of mohair and cashmere in regions of Kazakhstan, Kyrgyzstan and Uzbekistan. Small Ruminant Research, v. 120, n. 2?3, p. 209?218, 1 ago. 2014. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 17751-2 Textiles ? Quantitative analysis of cashmere, wool, other specialty animal fibers and their blends ? Part 2: Scanning electron microscopy method. 2016. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 5079: Textile fibres -- Determination of breaking force and elongation at break of individual fibres. p. 6. 1995. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 6889: Surface active agents ? Determination of interfacial tension by drawing up liquid films. p.10. 1986. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO/IEC 17025: General requirements for the competence of testing and calibration laboratories. 2017. INTERNATIONAL WOOL TEXTILE ORGANISATION. DTM-5: Method of Determining Wool Fibre Length Distribution of Fibres from Yarns or Fabrics Using a Single Fibre Length Measuring Machine. 1997. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-12: Measurement of the Mean and Distribution of Fibre Diameter Using the Sirolan-Laserscan Fibre Diameter Analyser. 2012. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-16: Method of test for wool fibre length using a wira fibre diagram machine. 1967. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-17: Determination of Fibre Length and Distribution Parameters. 2011. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-47: Measurement of the Mean and Distribution of Fibre Diameter of Wool using an Optical Fibre Diameter Analyser (OFDA). 2013. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-58: Scanning Electron Microscopic Analysis of Speciality Fibres and Sheep?s Wool and their Blends. 2000. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-6: Method of Test for the Determination of the Mean Diameter of Wool Fibres in Combed Sliver using the Airflow Apparatus. 2013. INTERNATIONAL WOOL TEXTILE ORGANISATION. IWTO-8: Method of Determining Fibre Diameter Distribution Parameters and Percentage of Medullated Fibres in Wool and other Animal Fibres by the Projection Microscope. 1997. KIM, Y.; KIM, T.; CHOI, H.-M. Qualitative Identification of Cashmere and Yak Fibers by Protein Fingerprint Analysis Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Industrial & Engineering Chemistry Research, v. 52, n. 16, p. 5563?5571, 24 abr. 2013. KOZ?OWSKI, R. M. Handbook of natural fibres Volume 1: Types, properties and factors affecting breeding and cultivation. [s.l.] The Textile Institute, 2012. LANARI, M. R. et al. Razas locales y fibras caprinas, bases para un desarrollo rural del norte de la Patagonia Argentina. Animal Genetic Resources Information, v. 45, n. March 2014, p. 55, 2009. LI, L.; JIA, G.; ZHOU, W. Effect of yarn properties on the pilling of cashmere knitted fabric. Fibres and Textiles in Eastern Europe, v. 77, n. 6, p. 76?79, 2009. MCGREGOR, B. Softness Attributes of Australian CashmereDepartment of Primary Industries. [s.l: s.n.]. MCGREGOR, B. A. Effects of different nutritional regimens on the productivity of australian cashmere goats and the partitioning of nutrients between cashmere and hair growth. Australian Journal of Experimental Agriculture, v. 28, n. 4, p. 459?467, 1988. MCGREGOR, B. A. Cashmere fibre crimp, crimp form and fibre curvature. International Journal of Sheep and Wool Science, v. 55, n. 1, 2007b. MCGREGOR, B. A. Production , properties and processing of American bison ( Bison bison ) wool grown in southern Australia. p. 431?435, 2012. MCGREGOR, B. A. Weathering, fibre strength and colour properties of processed white cashmere. Journal of the Textile Institute, v. 107, n. 9, p. 1193?1202, 2016. MCGREGOR, B. A. Physical, chemical, and tensile properties of cashmere, mohair, alpaca, and other rare animal fibers. In: BUNSELL, A. R. (Ed.). . Handbook of Properties of Textile and Technical Fibres. Second Edi ed. [s.l.] Mathew Deans, 2018. p. 1033. MCGREGOR, B. A.; AN, M.; JIANG, Y. Fleece metrology of Liaoning cashmere goats. Small Ruminant Research, v. 4, n. 1, p. 61?71, 1991. MCGREGOR, B. A.; BUTLER, K. L. Determinants of cashmere production: The contribution of fleece measurements and animal growth on farms. Small Ruminant Research, v. 78, n. 1?3, p. 96?105, 2008a. MCGREGOR, B. A.; BUTLER, K. L. The effects of cashmere attributes on the efficiency of dehairing and dehaired cashmere length. Textile Research Journal, v. 78, n. 6, p. 486?496, 2008b. MCGREGOR, B. A.; BUTLER, K. L. Cashmere production and fleece attributes associated with farm of origin, age and sex of goat in Australia. Australian Journal of Experimental Agriculture, v. 48, n. 8, p. 1090?1098, 2008c. MCGREGOR, B. A.; BUTLER, K. L. Implications to fleece evaluation derived from sources of variation contributing to cashmere fibre curvature. Small Ruminant Research, v. 81, n. 1, p. 1?7, 2009. MCGREGOR, B. A.; KERVEN, C.; TOIGONBAEV, S. Sources of variation contributing to production and quality attributes of Kyrgyz cashmere in Osh and Naryn provinces: Implications for industry development. Small Ruminant Research, v. 84, n. 1?3, p. 89?99, 2009. MCGREGOR, B. A.; KERVEN, C.; TOIGONBAEV, S. Sources of variation affecting cashmere grown in the Pamir mountain districts of Tajikistan and implications for industry development. Small Ruminant Research, v. 99, n. 1, p. 7?15, 2011. MCGREGOR, B. A.; LIU, X. Cuticle and cortical cell morphology and the ellipticity of cashmere are affected by nutrition of goats. The Journal of The Textile Institute, v. 108, n. 10, p. 1739?1746, 2017. MCGREGOR, B. A.; POSTLE, R. Processing and quality of cashmere tops for ultrafine wool worsted blend fabrics. International Journal of Clothing Science and Technology, v. 16, n. 1/2, p. 119?131, 2004a. MCGREGOR, B. A.; POSTLE, R. Softness and other fibre attributes of commercial cashmere textiles from China and other origins of production. 83rd World Conferency. Anais...Shanghai: 2004b MCGREGOR, B. A.; POSTLE, R. Worsted Cashmere Top and Yarns Blended with Low or High Curvature Superfine Merino Wool. Textile Research Journal, v. 77, n. 10, p. 792?803, 2007a. MCGREGOR, B. A.; POSTLE, R. Worsted Cashmere Top and Yarns Blended with Low or High Curvature Superfine Merino Wool. Textile Research Journal, v. 77, n. 10, p. 792?803, 2007b. MCGREGOR, B. A.; POSTLE, R. Mechanical Properties of Cashmere Single Jersey Knitted Fabrics Blended with High and Low Crimp Superfine Merino Wool. Textile Research Journal, v. 78, n. 5, p. 399?411, 2008. MCGREGOR, B. A.; POSTLE, R. Wear Attributes of Cashmere Single Jersey Knitted Fabrics Blended with High and Low Crimp Superfine Merino Wool. Textile Research Journal, v. 79, n. 10, p. 876?887, 2009. MCGREGOR, B. A.; QUISPE PE?A, E. C. Cuticle and cortical cell morphology of alpaca and other rare animal fibres. Journal of the Textile Institute, v. 5000, n. September, p. 1?8, 2017. MENKART, J.; DETENBECK, J. C. The Significance of Wool Fiber Crimp Part I: A Study on the Worsted System. Textile Research Journal, v. 27, n. 9, p. 665?689, 1957. MORTON, W. E.; HEARLE, J. W. S. Physical Properties of Textile Fibres: Fourth Edition. [s.l: s.n.]. MUELLER, J. P. et al. Implementation of a cashmere goat breeding program amongst nomads in Southern Iran. Small Ruminant Research, v. 129, p. 69?76, 2015. NAEBE, M. et al. Associations between the physiological basis of fabric-evoked prickle, fiber and yarn characteristics and the Wool ComfortMeter value. Textile Research Journal, v. 85, n. 11, p. 1122?1130, 2015. NAYLOR, G. R. S. THE ROLE OF COARSE FIBERS IN FABRIC PRICKLE USING BLENDED ACRYLIC FIBERS OF DIFFERENT DIAMETERS. Wool Technology and Sheep Breeding, v. 40, n. 1, p. 14?18, 1992. NUNES DA SILVA, E. M. et al. AVALIA??O DA ADAPTABILIDADE DE CAPRINOS EX?TICOS E NATIVOS NO SEMI-?RIDO PARAIBANO Evaluation of the adaptability of goats exotic and native of the semi-arid of Paraiba. Ci?nc. agrotec., Lavras, v. 30, n. 3, p. 516?521, 2006. OHASHI, S. et al. Identification of Cashmere and Other Animal Hair Fibers in Textiles by MALDI-TOF Mass Spectrometry. Journal of Fiber Science and Technology, v. 70, n. 5, p. 105?108, 2014. ONAL, L.; KORKMAZ, M.; TUTAK, M. Relations between the characteristics of Angora rabbit fibre. Fibers and Polymers, v. 8, n. 2, p. 198?204, 2007. ORIGIN PRO 9.0 Origin (OriginLab, Northampton, MA) PALLOTTI, S. et al. Variability of fibre quality on Chinese Alashan Left Banner White Cashmere goat. Italian Journal of Animal Science, v. 17, n. 1, p. 53?56, 2018. PAULING, L.; COREY, R. B. Two hydrogen-bonded spiral configurations of the polypeptide chainJournal of the American Chemical Society, 1950. POPESCU, C.; H?CKER, H. Hair--the most sophisticated biological composite material. Chemical Society Reviews, v. 36, n. 8, p. 1282?1291, 2007. QIN, X. et al. Research on knitted fabric properties of yak cashmere and cotton blend yarns. Fibres and Textiles in Eastern Europe, v. 25, n. 4, p. 31?35, 2017. RAFAT, S. A. et al. Divergent selection for total fleece weight in Angora rabbits: Correlated responses in wool characteristics. Livestock Science, v. 113, n. 1, p. 8?13, 2008. RANTASALO, S. Sami Rantasalo Propagation of Flexural Properties From Fibre To Fabric. n. May, 2014. SCHNEIDER, G. S. Market indicators. Dispon?vel em: <http://www.gschneider.com/market-reports/viewreports.php?id=7930>. Acesso em: 16 abr. 2018. SIRGHIE, C.; KOZ?OWSKI, R. M.; ROSKWITALSKI, Z. Cotton fibres. In: Handbook of Natural Fibres. [s.l: s.n.]. v. 1p. 11?23. SMITH, I. D.; CLARKE, W. H.; TURNER, H. N. The potential of feral goats in Australia for cashmere production. Journal of the Australian Institute of Agricultural Science, v. 39, n. 2, p. 128?131, 1973. SOARES, R. et al. Mass spectrometry and animal science: Protein identification strategies and particularities of farm animal species. Journal of Proteomics, v. 75, n. 14, p. 4190?4206, 2012. TEERINK, B. J. Hair of West-European Mammals. [s.l: s.n.]. VAN DER WESTHUYSEN, J. M. Marketing goat fibres. Small Ruminant Research. Anais...2005 VINEIS, C. et al. Validation of UPLC/ESI-MS method used for the identification and quantification of wool, cashmere and yak fibres. Journal of the Textile Institute, v. 108, n. 12, p. 2180?2183, 2017. VINEIS, C.; ALUIGI, A.; TONIN, C. Morphology and thermal behaviour of textile fibres from the hair of domestic and wild goat species. Autex Research Journal, v. 8, n. 3, p. 68?71, 2008. WANI, S. A.; SHAHEEN, F. A.; WANI, M. H. Cashmere producing smallholder nomads of himalaya: Survival challenges of a system. Small Ruminant Research, n. July, p. 0?1, 2017. WILDMAN, A. B. The Identification of Animal Fibres. Journal of the Forensic Science Society, v. 1, n. 2, p. 115?119, 1961. WORTMANN, F. J.; PHAN, K. H. Cuticle Scale Heights of Wool and Specialty Fibers and Their Changes Due to Textile Processing. Textile Research Journal, v. 69, n. 2, p. 139?144, 1999. WTIN. Wool Market Report. United Kingdom: [s.n.]. YANG, G., FU, Y., HONG, X., & WANG, C. Discussion on cashmere fiber identification technique by SEM and LM. Proceedings of the 3rd International Cashmere Determination Technique Symposium. Anais...China: 2005 YOKOHAMA, M. et al. Proteome analysis of cashmere. Animal Science Journal, v. 75, n. 5, p. 401?405, 2004. ZHOU, H. M. et al. Effects of non-genetic factors on production traits of Inner Mongolia cashmere goats in China. Small Ruminant Research, v. 47, n. 1, p. 85?89, 2003. ???. CN 104726982 A ?????????????China, 2015.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Zootecnia
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Zootecnia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/5972/4/2018+-+Lia+Souza+Coelho.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/5972/3/2018+-+Lia+Souza+Coelho.pdf.txt
http://localhost:8080/tede/bitstream/jspui/5972/2/2018+-+Lia+Souza+Coelho.pdf
http://localhost:8080/tede/bitstream/jspui/5972/1/license.txt
bitstream.checksum.fl_str_mv c74e37778c90869962ff59a5335dadbf
e0ee99686a051cbd641c4efffa61c85b
e5fa1d15e72ec34222105991cd650af7
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220375528996864