Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Fugimura, Michelle Midori Sena lattes
Orientador(a): Oshiro, Lidia Miyako Yoshii lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Zootecnia
Departamento: Instituto de Zootecnia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/4246
Resumo: The biofloc technology (BFT) has emerged through the search for techniques to make aquaculture more environmentally sustainable, while maintaining the high production and profitability. Better growth and productivity have been checked for several species of cultured penaeid BFT system compared to conventional systems, but information on Litopenaeus schmitti farming using this technology are limited. This study aimed to verify the technical feasibility of the intensive farming of shrimp L. schmitti in BFT system. Three experiments were carried out at the Marine Biology Station of UFRRJ (Mangaratiba, RJ). Juvenile shrimps were wild caught in Sepetiba Bay, Rio de Janeiro, and underwent an acclimation period of ten days in tanks with clear water before the start of the studies. In the first experiment, the contribution of microbial aggregates in feeding (biofloc and biofloc with feed) of shrimp L. schmitti grown at high stocking densities (100, 200 and 300 shrimp/m2), was evaluated for 60 days. The results suggest that juvenile L. schmitti benefited from the availability of additional nutritional source, represented by biofloc, however, these should be regarded as a additional dietary to rations diet. Stocking densities evaluated affected the productivity, growth and survival of L. schmitti, but the survival of approximately 80 % showing the potential of the species in super intensive culture conditions. The second experiment was conducted to verify the possibility of using the barley bagasse as a source of organic carbon in the system BFT fertilization, and to this end, compared to fertilization with barley bagasse, sugar cane molasses and cassava flour during the period of 60 days. The results of water quality, biofloc composition and growth of shrimp confirmed that the barley bagasse can be a suitable option and cost in areas near the breweries. Already, in the third experiment, the growth performance of L. schmitti, water quality and the biofloc formation were evaluated at three salinities (19, 26 and 33) and using two commercial diets (30 and 40 % protein) in static farming system throughout 35 days. Through the performance of L. schmitti obtained in the different treatments was evident that the farming can be done in any of salinities evaluated and using the commercial diet containing the lower protein levels. Thus, the results of this study demonstrate the technical feasibility of intensive shrimp farming L. schmitti using biofloc technology.
id UFRRJ-1_2f94eb90b4ff85f973b721cdd01cb90c
oai_identifier_str oai:localhost:jspui/4246
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Oshiro, Lidia Miyako Yoshii987.007.668-87http://lattes.cnpq.br/8112019853480327Wasielesky Junior, Wilson085.720.727-14http://lattes.cnpq.br/6107371291793259Fugimura, Michelle Midori Sena2020-12-08T10:54:57Z2013-12-17FUGIMURA, Michelle Midori Sena. Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos. 2013. 91 f. Tese (Programa de P?s-Gradua??o em Zootecnia) - Universidade Federal Rural do Rio de Janeiro, Serop?dica.https://tede.ufrrj.br/jspui/handle/jspui/4246The biofloc technology (BFT) has emerged through the search for techniques to make aquaculture more environmentally sustainable, while maintaining the high production and profitability. Better growth and productivity have been checked for several species of cultured penaeid BFT system compared to conventional systems, but information on Litopenaeus schmitti farming using this technology are limited. This study aimed to verify the technical feasibility of the intensive farming of shrimp L. schmitti in BFT system. Three experiments were carried out at the Marine Biology Station of UFRRJ (Mangaratiba, RJ). Juvenile shrimps were wild caught in Sepetiba Bay, Rio de Janeiro, and underwent an acclimation period of ten days in tanks with clear water before the start of the studies. In the first experiment, the contribution of microbial aggregates in feeding (biofloc and biofloc with feed) of shrimp L. schmitti grown at high stocking densities (100, 200 and 300 shrimp/m2), was evaluated for 60 days. The results suggest that juvenile L. schmitti benefited from the availability of additional nutritional source, represented by biofloc, however, these should be regarded as a additional dietary to rations diet. Stocking densities evaluated affected the productivity, growth and survival of L. schmitti, but the survival of approximately 80 % showing the potential of the species in super intensive culture conditions. The second experiment was conducted to verify the possibility of using the barley bagasse as a source of organic carbon in the system BFT fertilization, and to this end, compared to fertilization with barley bagasse, sugar cane molasses and cassava flour during the period of 60 days. The results of water quality, biofloc composition and growth of shrimp confirmed that the barley bagasse can be a suitable option and cost in areas near the breweries. Already, in the third experiment, the growth performance of L. schmitti, water quality and the biofloc formation were evaluated at three salinities (19, 26 and 33) and using two commercial diets (30 and 40 % protein) in static farming system throughout 35 days. Through the performance of L. schmitti obtained in the different treatments was evident that the farming can be done in any of salinities evaluated and using the commercial diet containing the lower protein levels. Thus, the results of this study demonstrate the technical feasibility of intensive shrimp farming L. schmitti using biofloc technology.A tecnologia de bioflocos (BFT) surgiu atrav?s da busca de t?cnicas a fim de tornar a aquicultura mais ambientalmente sustent?vel, mantendo a alta produ??o e lucratividade. Melhores crescimento e produtividades j? foram verificados para diversas esp?cies de pene?deos criados no sistema BFT comparado aos sistemas convencionais, por?m informa??es sobre a cria??o da esp?cie Litopenaeus schmitti utilizando essa tecnologia s?o limitadas. Este trabalho teve como objetivo principal verificar a viabilidade t?cnica da produ??o intensiva do camar?o L. schmitti em sistema BFT. Para tanto foram realizados tr?s experimentos na Esta??o de Biologia Marinha da UFRRJ (Mangaratiba, RJ). Os juvenis de L. schmitti selvagens foram capturados na Ba?a de Sepetiba, Rio de Janeiro, e passaram por um per?odo de aclimata??o de dez dias em tanques com ?gua clara antes do in?cio do estudo. No primeiro experimento, a contribui??o dos agregados microbianos na alimenta??o (bioflocos e bioflocos com adi??o de ra??o comercial contendo 38 % de prote?na) dos camar?es L. schmitti criados em elevadas densidades de estocagem (100, 200 e 300 camar?es/m2), foi avaliada durante um per?odo de 60 dias. Os resultados sugerem que os juvenis L. schmitti usufru?ram da disponibilidade da fonte nutricional extra, representada pelos bioflocos, entretanto, estes devem ser considerados como um recurso alimentar adicional ? dieta com ra??o. As densidades de estocagem avaliadas afetaram a produtividade, o crescimento e a sobreviv?ncia de L. schmitti, por?m, as sobreviv?ncias de aproximadamente 80 % demonstram o potencial de cria??o da esp?cie em condi??es intensivas. O segundo experimento foi realizado para verificar a possibilidade de uso do baga?o de cevada como fonte de carbono org?nico na fertiliza??o do sistema BFT, e para tal, comparou-se a fertiliza??o com baga?o de cevada, mela?o de cana-de-a??car e farinha de mandioca durante o per?odo de 60 dias. Os resultados de qualidade de ?gua, de composi??o proximal de bioflocos e de crescimento do camar?o confirmaram que o baga?o de cevada pode ser uma op??o adequada e de baixo custo, em locais pr?ximos as ind?strias cervejeiras. J?, no terceiro experimento, o desempenho zoot?cnico de L. schmitti, a qualidade de ?gua e a forma??o de bioflocos foram avaliados em tr?s salinidades (19, 26 e 33) e com o fornecimento de duas dietas comercias (30 e 40 % de prote?na) em um sistema de cria??o est?tico ao longo de 35 dias. Atrav?s do desempenho de L. schmitti obtido nas diferentes tratamentos ficou evidente que a cria??o pode ser feita em qualquer uma das salinidades avaliadas, e com o fornecimento da dieta comercial contendo o menor teor de prote?na. Portanto, os resultados do presente estudo demonstram a viabilidade t?cnica da cria??o intensiva do camar?o L. schmitti utilizando a tecnologia de bioflocos.Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-12-08T10:54:57Z No. of bitstreams: 1 2013 - Michelle Midori Sena Fugimura.pdf: 1218148 bytes, checksum: b9681043f2f3db0d6e5529c27d1515cf (MD5)Made available in DSpace on 2020-12-08T10:54:57Z (GMT). No. of bitstreams: 1 2013 - Michelle Midori Sena Fugimura.pdf: 1218148 bytes, checksum: b9681043f2f3db0d6e5529c27d1515cf (MD5) Previous issue date: 2013-12-17Funda??o Carlos Chagas Filho de Amparo ? Pesquisa do Estado do RJ, FAPERJ, Brasil.application/pdfhttps://tede.ufrrj.br/retrieve/63418/2013%20-%20Michelle%20Midori%20Sena%20Fugimura.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em ZootecniaUFRRJBrasilInstituto de ZootecniaANDERSON, R. K.; PARKER, P. L.; LAWRENCE, A. L. A13C/12C tracer study of the utilization of presented feed by commercially important shrimp Penaeus vannamei in a pond grow out system. Journal of the World Aquaculture Society, 18, p. 148-155, 1987. ARNOLD, S. J.; COMAN, F. E.; JACKSON, C. J. et al. High-intensivy, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293, p. 42 ? 48, 2009. AVNIMELECH, Y.; KOCHVA, M.; DIAB, S. Development of controlled intensive aquaculture systems with limited water exchange and adjusted carbon to nitrogen ratio. Israeli Journal of Aquaculture, 46, p. 119-131, 1994. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, p. 227?235, 1999. AVNIMELECH, Y. Feeding with microbial flocs by tilapiain minimal discharge bio-flocs technology ponds. Aquaculture, 264, p. 140-147, 2007. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O. et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, p. 163?172, 2010. BARBIERI, R. C.; OSTRENSKY, A. Camar?es Marinho ? Engorda. Vi?osa ? MG: Aprenda F?cil Editora, 2002. 351 p. BROWDY, C. L.; BRATVOLD, D.; STOKES, A. D. et al. Perspectives on the application of closed shrimp culture systems. In: SPECIAL SESSION ON SUSTAINABLE SHRIMP CULTURE, 2001, Baton Rouge. Proceedings of the Special Session on Sustainable Shrimp Culture. Baton Rouge, LA, USA: E.D. Jory & C.L. Browdy, 2001, p. 20-34. BROWDY, C. L.; MOSS, S. M. Shrimp culture in urban, super-intensive closed systems. In: URBAN AQUACULTURE, 2005, Oxford, UK: ed. by B.A. Costa Pierce, 2005, p.173-186. BUENO, S. L. S. Maturation and spawning of the white shrimp Penaeus schmitti Burkenroad, 1936, under large scale rearing conditions. Journal of the World Aquaculture Society, v. 21, n. 3, p. 170-179, 1990. BURFORD, M. A.; SELLARS, M. J.; ARNOLD, S. J. et al. Contribution of natural biota associated with substrates to the nutritional requirements of the post-larval shrimp, Penaeus esculentus (Haswell) in high-density rearing systems. Aquaculture Research, 35, p. 508-515, 2004. CHEN, Y. L.; CHEN, H. Juvenile Penaeus monodon as effective zooplankton predators. Aquaculture, 103, p. 35?44, 1992. 8 CRAB, R.; AVNIMELECH, Y.; DEFOIRDT, T. et al. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270, p. 1 ? 14, 2007. CRAB, R.; KOCHVA, M.; VERSTRAETE, W. et al. Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40, p. 105-112, 2009. CRAB, R.; LAMBERT, A.; DEFOIRDT, T. et al. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. Journal of Applied Microbiology, 109, p. 1643?1649, 2010. COHEN, J.; SAMOCHA, T. M.; FOX, J. M. et al. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools. Aquacultural Engineering, 32, p. 425-442, 2005. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T. et al. The basics of bioflocs technology: the added value for aquaculture. Aquaculture, 277, p. 125?137, 2008. D?INCAO, F.; VALENTINI, H.; RODRIGUES, L. F. Avalia??o da pesca de camar?es nas regi?es sudeste e sul do Brasil. Atl?ntica, v. 24, n. 2, p. 103-116, 2002. EBELING, J. M.; TIMMONS, M. B.; BISOGNI, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia?nitrogen in aquaculture systems. Aquaculture, 257, p. 346?358, 2006. EMERENCIANO, M.; BALLESTER, E. L. C.; CAVALLI, R. O. et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43, p. 447?457, 2012. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). 2012. The State of World Fisheries and Aquaculture. Dispon?vel em: <http://www.fao.org/docrep/016/i2727e/i2727e00.htm> Acesso em: 20/07/2012. HAMLIN, H. J.; MICHAELS, J. T.; BEAULATON, C. M. et al. Comparing denitrification rates and carbon sources in commercial scale up flow denitrification biological filters in aquaculture. Aquacultural Engineering, 38, p. 79?92, 2008. HARGREAVES, J. A. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34, p. 344-363, 2006. HOPKINS, J. S.; HAMILTON, R. D.; SANDIFER, P. A. et al. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. Journal of the World Aquaculture Society, 24, p. 304?320, 1993. JORAND, F., ZARTARIAN, F.; THOMAS, F. et al. Chemical and structural (2d) linkage between bacteria within activated-sludge flocs. Water Research, v. 29, n. 7, p. 1639?1647, 1995. 9 MARCHIORI, M. A. Guia ilustrado de matura??o e larvicultura do camar?o-rosa Penaeus paulensis P?rez- Farfante, 1967. Rio Grande: FURG, 1996. MCABEE, B. J. BROWDY, C.; RHODES, R. et al. The use of greenhouse-enclosed raceway systems for the superintensive production of pacific white shrimp Litopenaeus vannamei in the United States. Global Aquaculture Advocate, 6, p. 40 ? 43, 2003. MICHAUD, L.; BLANCHETON, J. P.; BRUNI, V. et al. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquacultural Engineering, 34, p. 224- 233, 2006. MINIST?RIO DA PESCA E AQUICULTURA (MPA). Boletim Estat?stico da Pesca e Aquicultura. Bras?lia, 128 p., 2012. MISHRA, J. K.; SAMOCHA, T. M.; PATNAIK, S. et al. Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering, 38, p. 2-15, 2008. MOSS, S. M. Dietary importance of microbes and detritus in penaeid shrimp aquaculture. In: Microbial Approaches to Aquatic Nutrition within Environmentally Sound Aquaculture Production Systems, Baton Rouge, USA: World Aquaculture Society, 2002, p. 1-18. OTOSHI, C.; TANG, L. R.; DAGDAGAN, D. V. et al. Super-intensive grow out of the Pacific white shrimp, Litopenaeus vannamei: Recent advances at the Oceanic Institute. In: International Conference on Recirculating Aquaculture, 6, 2006, VA. Proceedings from the 6th International Conference on Recirculating Aquaculture. VA, 2006, p. 1-5. P?REZ FARFANTE, I.; KENSLEY, B. Penaoeid and Sergestoid Shrimps and Prawns of the World: Keys and Diagnoses for the Families and Genera. ?ditions du Mus?um Paris, p. 91, 1997. RAY, A. J.; DILON, K. S.; LOTZ, J. M. Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacultural Engineering, 45, p.127? 136, 2011. ROCHA, I. P. Uma an?lise da produ??o, demanda e pre?os do camar?o no mercado internacional. Revista Brasileira da Associa??o de Criadores de Camar?o, Recife, v. 7, n. 2, p. 24-35, 2005. SAMOCHA, T. M.; LAWRENCE, A. L.; COLLINS, C. A. et al. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal of Applied Aquaculture,15, n. 3-4, p.1?19, 2004. SAMOCHA, T. M. et al. Intensive raceways without water exchange analyzed for white shrimp culture. Global Aquaculture Advocate, 13, p. 22?24, 2010. SANDIFER, P. A.; HOPKINS, J. S.; STOKES, A. D. et al. Preliminary comparisons of the native Penaeus setiferus and Pacific Penaeus vannamei white shrimp for pond culture in South Carolina, USA. Journal World Aquaculture, v. 24, n. 3, p. 295?303, 1993. 10 SORGELOOS, P. Technologies for sustainable aquaculture development, Plenary Lecture II. In: Aquaculture in the Third Millennium.Technical Proceedings of the Conference on Aquaculture in the Third Millennium, NACA, Bangkok, Thailand, February 2000. Ed. by Subasinghe, R. P; Bueno, P.; Philips, M. J. et al. FAO, Rome, Italy, p. 23?28, 2001. WASIELESKY, W.; ATWOOD, H.; STOKES, A. et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258, p. 396?403, 2006. ZHAO, P.; HUANG, J.; WANG, X-H. et al. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture, 354?355, p. 97?106, 2012. AGUILAR, V.; RACOTTA, I. S.; GOYTORT?A, E. et al. The influence of dietary arachidonic acido n the imune response and performance of Pacific whiteleg shrimp, Litopenaeus vannamei, at high stocking density. Aquaculture Nutrition, 18, p. 258-271, 2012 ALLAN, G. F.; MORIARTY; D. J. W.; MAGUIRE, G. B. Effects of pond preparation and feeding rate on production of Penaeus monodon Fabricius, water quality, bacteria and benthos in model farming ponds. Aquaculture, 130, p. 329?349, 1995. ALONSO-RODRIGUEZ, R.; PAEZ-OSUNA, F. Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture, 219, p. 317?336, 2003. AOAC. Official methods of analysis, 17? Ed. Association of Official Analytical Chemists, Gaithersburg, MD, 2000. AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for the examination of water and wastewater. Washington, 1998, 1193 p. AMINOT, A.; CHAUSSEPIED, M. Manuel des analyses chimiques en milieu marin. Brest: Cnexo, 1983, 395 p. ARNOLD, S. J.; COMAN, F. E.; JACKSON, C. J. et al. High-intensivy, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293, p. 42 ? 48, 2009. AVNIMELECH, Y.; KOCHVA, M.; DIAB, S. Development of controlled intensive aquaculture systems with limited water exchange and adjusted carbon to nitrogen ratio. Israeli Journal of Aquaculture, 46, p. 119-131, 1994. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, p. 227?235, 1999. ______. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264, p. 140-147, 2007. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O. et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, p. 163- 172, 2010. BIEDENBACH, J. M.; SMITH, L. L.; THOMSEN, T. K. et al. Use of nematode Panagrellus redivivus as an Artemia replacement in a larval penaeid diet. Journal of the World Aquaculture Society, v. 20, n. 2, p. 61?71, 1989. BOYD, C. E. Water quality management and aeration in shrimp farming. Fisheries and Allied Aquacultures Department, Series No. 2, Alabama Agricultural Experiment Station, Auburn University, Alabama Birmingham.,183 p., 1989. 31 BURFORD, M. A. Phytoplankton dynamics in shrimp ponds. Aquaculture Research, 28, p. 351-360, 1997. BURFORD, M. A.; THOMPSON, P. J.; McINTOSH, R. P. et al. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture, 219, p. 393-411, 2003. COHEN, J.; SAMOCHA, T. M.; FOX, J. M. et al. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools. Aquacultural Engineering, 32, p. 425-442, 2005. CRAB, R.; CHIELENS, B.; WILLE, M. et al. The effect of different carbon sources on the nutritional nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41, p. 559-567, 2010. D?INCAO, F.; VALENTINI, H.; RODRIGUES, L. F. Avalia??o da pesca de camar?es nas regi?es sudeste e sul do Brasil. Atl?ntica, v. 24, n. 2, p. 103-116, 2002. DECAMP, O.; CONQUEST, L.; CODY, J. et al. Effect of shrimp stocking density on size-fractionated phytoplankton and ecological groups of ciliated protozea within zero-water exchange shrimp culture systems. Journal of the World Aquaculture Society, v. 38, n. 3, p. 395 ? 406, 2007. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T. et al. The basics of bioflocs technology: the added value for aquaculture. Aquaculture, 277, p. 25?137, 2008. EBELING, J. M..; TIMMONS, M. B.; BISOGNI, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia?nitrogen in aquaculture systems. Aquaculture, 257, p. 346?358, 2006. EMERENCIANO, M. G. C.; WASIELESKY, W. JR.; SOARES, R. B. et al. Crescimento e sobreviv?ncia do camar?o-rosa (Farfantepenaeus paulensis) na fase de ber??rio em meio heterotr?fico. Acta Scientarium Biological Sciences, v. 29, p. 1-7, 2007. EMERENCIANO, M.; BALLESTER, E. L. C.; CAVALLI, R. O. et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43, p. 447?457, 2012. FERREIRA, L. M. M. H. M. Forma??o de flocos microbianos em cultivo do camar?o-rosa Farfantepenaeus paulensis e do camar?o-branco Litopenaeus vannamei. 2008. 44 f. Disserta??o (Mestrado em Aq?icultura), Universidade Federal de Rio Grande, Rio Grande do Sul, 2008. F?ES, G. K.; FR?ES, C.; KRUMMENAUER, D. et al. Nursery of pink shrimp Farfantepenaeus paulensis in biofloc technology culture system: survival and growth at different stocking densities, Journal of Shelfish Research, v. 30, n.2, p. 367-373, 2011. FOLCH, J. M.; LEES, M.; SLOANE-STANLEY, G. H. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, p. 497-507, 1957. 32 FRAGA, I.; GALINDO, J.; ARAZOZA, M. et al. Evaluaci?n de niveles de prote?na y densidades de siembra em el crecimiento del camar?n blanco Litopenaeus schmitti. Revista de Investigaciones Marinas, v. 3, n. 2, p. 141-147, 2002. FUGIMURA, M. M. S. Efeito da temperatura e densidade de estocagem no crescimento e sobreviv?ncia de juvenis de Litopenaeus schmitti criado em cativeiro. Disserta??o (Mestrado em Zootecnia), Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, 45 p, 2009. FURTADO, P. S.; POERSCH, L. H.; WASIELESKY JR, W. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture, 231, p. 130-135, 2011. GALINDO, J.; ALVAREZ, J. S.; FRAGA, I. et al. Influencia de los niveles inclusion de lipidos em dietas para juveniles de camar?n blanco Penaeus schmitti. Revista Cubana de Investigaciones Pesqueras, 17, p. 23-36, 1992. GREEN, B. W.; SCHRADER, K. K.; PERSCHBACHER, P. W. Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. Aquaculture Research, p. 1 ? 17, 2012. GRIFFITH, R. E. Phytoplankton of Chesapeake Bay: An illustrated guide to the genera. University of Maryland Natural Resources Institute, 1967, 78 p. JORY, D. E.; CABRERA, T. R.; DUGGER, D. M. et al. A global review of shrimp feed management: status and perspectives. In: Special Session on Sustainable Shrimp Culture, 2001, Baton Rouge, L.A. Proceedings of the Special Session on Sustainable Shrimp Culture, Baton Rouge, L.A: The World Aquaculture Society, 2001, p. 135. JU, Z. Y.; FORSTER, I.; CONQUEST, L. et al. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39, p. 118-133, 2008. KHATOON, H.; YUSOFF, F. M.; BANERJEE, S. et al. Use of periphytic cyanobacterium and mixed diatoms coated of Penaeus monodon Fabricius postlarvae. Aquaculture, 271, p. 196-205, 2007. KUHN, D. D.; BOARDMAN, G. D.; LAWRENCE, A. L. et al. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture, 296, p. 51-57, 2009. KUMARLY, K.; DA JONES, A. B.; EAST, J. Comparative analysis of the growth and survival of Penaeus monodon (Fabricius) larvae, from protozoea I to postlarvae I, on live feeds, artificial diets and combinations of both. Aquaculture, 81, p. 27?45, 1989. KUMLU, M.; FLETCHER, D. J. The Nematode Panagrellus redivivus as an alternative live feed for larval Penaeus indicus. Israeli Journal of Aquaculture, v. 49, n. 12, p., 1997. KOROLEFF, F.; PALMORK, K. H. Report on the Ices/Scor Nutrient Intercalibration Experiment. ICES, C.M. Hydr.Comm, 1972. 33 LANARI, D.; BALLESTRAZZI, R.; TIBALDI, E. Effects of fertilization and stocking rate on the performance of Penaeus japonicus (Bate) in pond culture. Aquaculture, 83, p. 269? 279, 1989. LIN, Y.C.; CHEN, J. C. Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259, p. 109?119, 2001. LIN, Y. C; CHEN, J. C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224, p. 193?201, 2003. MAGUIRE, G.B.; LEEDOW, M. I. A study of the optimum stocking density and feeding rates for school prawns Metapenaeus macleayi (Haswell) in some Australian brackish water farming ponds. Aquaculture, 30, p. 285-297, 1983. M?RQUEZ, J. E. Q.; ANDREATTA, E. R.; VINATEA, L. et al. Efeito da densidade de estocagem nos par?metros zoot?cnicos da cria??o de camar?es Litopenaeus schmitti. Boletim do Instituto de Pesca, 38, p. 145-153, 2012. NAGANO, N.; DECAMP, O. Ingestion of a ciliated protozoa by first-feeding larval stage of Pacific white shrimp, Litopennaeus vannamei (Boone). Aquaculture Research, 35, p. 516?518, 2004. NEAL, R. S., COYLE, S. D.; TIDWELL, J. H. Evaluation of stocking density and light level on the growth and survival of the pacific white shrimp, Litopenaeus vannamei, reared in zero-exchange systems. Journal of the Word Aquaculture Society, v. 41, n. 4, p. 533-544, 2010. NEEDHAM, P. R. Guias para el reconocimiento de algas e invertebrados dulceacu?cuolas. 5? edi??o, p. 3 ? 225, 1973. NETO, J. D. Pesca de camar?es na costa norte do Brasil. Atl?ntica, 13, p. 21-28, 1991. NGA, B. T.; LQRLING, M. PEETERS, E. T. H. M. Chemical and physical effects of crowding on growth and survival of Penaeus monodon Frabricius post-larvae. Aquaculture, 246, p. 455-465, 2005. NOOTONG, K.; PAVASANT, P. Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system. Journal of the World Aquaculture Society, v. 42, n. 3, p. 339-346, 2011. PALMER, C. M. Algae and water pollution an illustrated manual on the identification, significance, and control of algae in water supplies and in polluted water. U.S. Environmental Protection Agency Cincinnati, Ohio. 124 pp, 1977. PARRA, R.; HERNANDEZ, L. Estudio preliminar de los requerimientos nutricionales de juveniles de camar?n blanco Penaeus schmitti (Burkenroad). Boletin Red Acuicultura, v. 6, n. 1, p. 12-16, 1992. PATIL, V.; K?LLQVIST, T.; OLSEN, E. et al. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International, 15, p. 1-9, 2007. 34 PENAFLORIDA, V. D. Interaction between dietary levels of calcium and phosphorus on growth of juvenile shrimp, Penaeus monodon. Aquaculture, 172, p. 281?289, 1999. RAY, J. A.; LEWIS, B. L.; BROWDY, C. L. et al. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299, p. 89?98, 2010. RENAULD, S. M.; VAN THINH, L.; PARRY, D. L. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture, 170, p. 147? 159, 1999. RUBRIGHT, J. S.; HARRELL, J. L.; HOLCOMB, H. W. et al. Responses of planktonic and benthic communities to fertilizer and feed applications in shrimp mariculture ponds. Journal of World Mariculture Society, 12, p. 281?299, 1981. SAMOCHA, T. M.; LAWRENCE, A. L.; COLLINS, C. A. et al. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal of Applied Aquaculture, v. 15, n. 3-4, p. 1?19, 2004. SAMOCHA, T. M.; PATNAIK, S.; SPEED, M. et al. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36: 184?191, 2007. SILVA, C. F.; BALLESTER, E.; MONSERRAT, J. et al. Contribution of microorganisms to the biofilm nutricional quality protein and lipid contents. Aquaculture Nutrition, 15, p. 507-514, 2008. TACON, A. G. J.; CODY, J. J.; CONQUEST, L. D. et al. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition, 8, p. 121?137, 2002. THOMPSON, F. L.; ABREU, P. C.; WASIELESKY, W. Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, 203, p. 263?278, 2002. VAN WYK, P.; SCARPA, J. Water quality and management. In: Van Wyk, P., M. Davis-Hodgkins, R. Laramore, K.L. Main, J. Mountain & J. Scarpa. Farming Marine Shrimp in Recirculating Freshwater Systems. Florida Department of Agriculture and Consumer Services, Tallahassee, pp. 128?138, 1999. VINATEA, L.A. Princ?pios qu?micos da qualidade de ?gua em aquicultura. Florian?plis, Universidade Federal de Santa Catarina, 166 pp, 1997. WASIELESKY, W.; POERSCH; L. H.; JENSEN, L. et al. Effect of stocking density on pen reared pink shrimp Farfantepenaeus paulensis (P?rez-Farfante, 1967) (Decapoda, Penaidae). Nauplius, v. 9, n. 2, p. 163-167, 2001. WASIELESKY, W.; ATWOOD, H.; STOKES, A. et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258, p. 396?403, 2006. ZAR, J. H. Biostatistical Analysis. Third Edition New Jersey: Prentice Hall, 1996. 662 p. 35 ZHAO, P.; HUANG, J.; WANG, X-H. et al. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture, 354?355, p. 97?106, 2012. ALBUQUERQUE, D. M. N. Res?duo desidratado de cervejaria para su?nos em crescimento e termina??o. 2009. 71 f. Disserta??o (Mestrado em ci?ncia animal), Universidade Federal do Piaui, Piaui, 2009. ALONSO-RODRIGUEZ, R.; PAEZ-OSUNA, F. Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture, 219, p. 317?336, 2003. AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for the examination of water and wastewater. Washington, 1998, 1193 p. AMINOT, A.; CHAUSSEPIED, M. Manuel des analyses chimiques en milieu marin. Brest: Cnexo, 1983, 395 p. AOAC. Official methods of analysis, 17? Ed. Association of Official Analytical Chemists, Gaithersburg, MD, 2000. ASADUZZAMAN, M.; WAHAB, M. A.; VERDEGEM, M. C. J. et al. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280, p. 117?123, 2008. ASADUZZAMAN, M.; RAHMAN, M. M.; AZIM, M. E. et al. Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture, 306, p.127-136, 2010. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, p. 227?235, 1999. AVNIMELECH, Y. Bio-filters: the need for an new comprehensive approach. Aquacultural Engineering, 34, p. 172?178, 2006. AVNIMELECH, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264, p. 140-147, 2007. AZIM, M. E.; LITTLE, D. C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, p. 29?35, 2008. BALLESTER, E. L .C.; WASIELESKY, W. JR.; CAVALLI, R. O. et al. Nursery of the pink shrimp Farfantepenaeus paulensis in cages with artificial substrates: biofilm composition and shrimp performance. Aquaculture, 265, p. 355?362, 2007. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O.et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, p. 163?172, 2010. BOYD, C. Water quality in ponds for aquaculture. Alabama: Aubum University, Alabama. Birmingham Publishing Co. 482 p, 1990. 56 BURFORD, M. A.; LORENZEN, K. Modeling nitrogen dynamics in intensive shrimp ponds: the role of sediments remineralization. Aquaculture, v. 229, n. 1?4, p. 129?145, 2004. CAPPELLE, E. R.; VALADARES FILHO, S. C.; SILVA, J. F. C. et al. Estimativas do valor energ?tico a partir de caracter?sticas qu?micas e bromatol?gicas dos alimentos. Revista Brasileira de Zootecnia, v.30, n.6, p. 1837-1856, 2001. COSTA, J. M. B.; MATTOS, W. R. S.; BIONDI, P. et al. Degradabilidade ruminal do res?duo ?mido de cervejaria. Boletim Ind?stria Animal, v.52, n.1, p.87-94, 1995. COSTA, A. D.; VIEIRA, A. A.; LIMA, C. A. R. et al. Desempenho de su?nos em crescimento (26-70 kg) alimentados com ra??es contendo baga?o de cevada. In: Zootec, S?o Paulo. Anais do Zootec, SP, 2009. CRAB, R.; KOCHVA, M.; VERSTRAETE, W. et al. Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40, p.105-112, 2009. CRAB, R.; CHIELENS, B.; WILLE, M. et al. The effect of different carbon sources on the nutritional nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41, p. 559-567, 2010. DECAMP, O.; CONQUEST, L.; CODY, J. et al. Effect of shrimp stocking density on size-fractionated phytoplankton and ecological groups of ciliated protozea within zero-water exchange shrimp culture systems. Journal of the World Aquaculture Society, v. 38, n. 3, p. 395 ? 406, 2007. DEPETERS, E. J.; CANT, J. P. Nutritional factors influencing the nitrogen composition of bovine milk: a review. Journal of Dairy Science, v.75, n.8, p. 2043-2070, 1992. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T. et al. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, 277, p.125-137, 2008. EMERENCIANO, M.; BALLESTER, E. L. C.; CAVALLI, R. O. et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43, p. 447?457, 2012. FERREIRA, L. M. M. H. M. Forma??o de flocos microbianos em cultivo do camar?o-rosa Farfantepenaeus paulensis e do camar?o-branco Litopenaeus vannamei. 2008. 44 f. Disserta??o (Mestrado em Aq?icultura), Universidade Federal de Rio Grande, Rio Grande do Sul, 2008. FOLCH, J. M.; LEES, M.; SLOANE-STANLEY, G .H. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, p. 497-507, 1957. GADELHA, R. G. F.; PRADO, J. P. S.; CAVALHEIRO, J. M. D. Farinha do baga?o de cevada em dietas para a engorda de camar?es marinhos. Ci?ncia Rural (online), v. 40, n. 1, p. 170 ? 174. GODOY, L. C.; ODEBRECHT, C.; BALLESTER, E. et al. Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquaculture International, 20, p. 559-569, 2012. 57 GRIFFITH, R. E. Phytoplankton of Chesapeake Bay: An illustrated guide to the genera. University of Maryland Natural Resources Institute, 1967, 78 p. HARGREAVES, J. A. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34, p. 344?363, 2006. HARI, B.; KURUP, B. M.; VARGHESE, J. T. et al. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture, 241, p. 179?194, 2004. JEFFREY, S. W.; HUMPHREY, G. F. New Spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochemie und Physiologic der Pflanzen, 167, p. 191-194, 1975. JORY, D. E.; CABRERA, T. R.; DUGGER, D. M. et al. A global review of shrimp feed management: status and perspectives. In: Special Session on Sustainable Shrimp Culture, 2001, Baton Rouge, L.A. Proceedings of the Special Session on Sustainable Shrimp Culture, Baton Rouge, L.A: The World Aquaculture Society, 2001, p. 135. JU, Z. Y.; FORSTER, I.; CONQUEST, L. et al. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39, p. 118-133, 2008. KHATOON, H.; YUSOFF, F. M.; BANERJEE, S. et al. Use of periphytic cyanobacterium and mixed diatoms coated of Penaeus monodon Fabricius postlarvae. Aquaculture, 271, p. 196-205, 2007. KOROLEFF, F.; PALMORK, K. H. Report on the Ices/Scor Nutrient Intercalibration Experiment. ICES, C.M. Hydr.Comm. 1972. KUMARLY, K., DA JONES, A. B.; EAST, J. Comparative analysis of the growth and survival of Penaeus monodon (Fabricius) larvae, from protozoea I to postlarvae I, on live feeds, artificial diets and combinations of both. Aquaculture, 81, p. 27?45, 1989. KUMLU, M.; FLETCHER, D. J. The Nematode Panagrellus redivivus as an alternative live feed for larval Penaeus indicus. Israeli Journal Aquaculture, v. 49, n. 1, p. 12-18, 1997. KUMLU, M.; FLETCHER, D. J.; FISHER, C. M. Larval pigmentation, survivaland growth of Penaeus indicus fed the nematode Panagrellus redivivus enriched with astaxanthin and various lipids. Aquaculture Nutrition, 4, p. 193?200, 1998. LEFLAIVE, J.; TEN-HAGE, L. Algal and cyanobacterial secondary metabolites in freshwaters a comparison of allelopathic compounds and toxins. Freshwater Biology, 52, p. 199 ? 214, 2007. LIN, Y. C., CHEN, J. C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224, p. 193?201, 2003. MAHANAND, S. S.; MOULICK, S.; SRINIVASA RAO, P. Optimum formulation of feed for rohu, Labeo rohita (Hamilton), with biofloc as a component. Aquaculture International, 2012. 58 NEEDHAM, P. R. Guias para el reconocimiento de algas e invertebrados dulceacu?cuolas. 5? ed., 1973, p.3 - 225. NOOTONG, K.; PAVASANT, P. Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system. Journal of theWorld Aquaculture Society, v. 42, n. 3, p. 339-346, 2011. PALMER, C. M. Algae and water pollution an illustrated manual on the identification, significance, and control of algae in water supplies and in polluted water. U.S. Environmental Protection Agency Cincinnati, Ohio.124 p., 1977. P?REZ FARFANTE, I.; KENSLEY, B. Penaoeid and Sergestoid Shrimps and Prawns of the World: Keys and Diagnoses for the Families and Genera. ?ditions du Mus?um Paris, 1997, p. 91. RAY J. A.; LEWIS, B. L.; BROWDY, C. L. et al. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299, p. 89?98, 2010. RICHARDS, F. A.; THOMPSON, T. G. The estimation and characterization of plankton populations by pigment analysis. II. A spectrophotometric method for the estimation of plankton pigments. Journal of Marine Research, 11, p. 156 ? 172, 1952. SAMOCHA, T. M.; PATNAIK, S.; SPEED, M. et al. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36, p. 184?191, 2007. SANTOS, J. L.; SEVERINO-RODRIGUES, E.; VAZ-DOS-SANTOS, A. M. Estrutura populacional do camar?o-branco Litopenaeus schmitti nas regi?es estuarina e marinha da baixada santista, S?o Paulo, Brasil. Boletim do Instituto de Pesca, v. 34, n. 3, p. 375 ? 389. SCHNEIDER, O.; SERETI, V.; MACHIELS, M. A. M. et al. The potential of producing heterotrophic bacterial biomass on aquaculture waste. Water Research, 40, p. 2684?2694, 2006. SILVA, V. B.; FONSECA, C. E. M.; MORENZ, M. J. F. et al. Res?duo ?mido de cervejaria na alimenta??o de cabras. Revista Brasileira de Zootecnia, v. 39, n. 7, p. 1595 ? 1599, 2010. SERRA, F. P. Utiliza??o de diferentes fontes de carbono no cultivo do camar?o Litopenaeus vannamei em sistema com bioflocos. 2013. 36 f. Disserta??o (Mestrado em aquicultura) - Universidade Federal do Rio Grande, Rio Grande do Sul, 2013. STRICKLAND, J. D. H.; PARSONS, T. R. A practical handbook of seawater analysis. 2 ed. Ottawa: Fisheries Research Board of Canada, 1972. 311 p. TACON, A. G .J.; CODY, J. J.; CONQUEST, L. D. et al. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition, 8, p. 121?137, 2002. VAN WYK, P.; SCARPA, J. Water quality and management. In: Van Wyk, P., et al. (Ed.), Farming Marine Shrimp in Recirculating Freshwater Systems. Florida Department of Agriculture and Consumer Services, Tallahassee, 1999, p. 128?138. 59 VIEIRA, A. A.; BRAZ, J. M. Baga?o de cevada na alimenta??o animal. Revista Eletr?nica Nutritime, 2009. Dispon?vel em: <http://www.nutritime.com.br/>. Acesso em 10. Set. 2013. VILANI, F. G. Uso do farelo de arroz na fertiliza??o da ?gua em sistema de cultivo com bioflocos e seu efeito sobre o desempenho zoot?cnico de Litopenaeus vannamei. 2011. 52 f. Disserta??o (Mestrado em aquicultura) - Universidade Federal de Santa Catarina, Santa Catarina, 2011. WASIELESKY, W.; ATWOOD, H.; STOKES, A. et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258, p. 396?403, 2006. ZAR, J. H. Biostatistical Analysis. Third Edition New Jersey: Prentice Hall, 1996. 662 p. AKIYAMA, D. M., Future consideration for shrimp nutrition and the aquaculture feed industry. In: SPECIAL SESSION ON SHRIMP FARMING, 1992. L.A. Proceedings of the Special Session on Shrimp Farming, LA. USA: World Aquaculture Society, 1992. p. 198-205. ALVAREZ, J. S.; HERN?NDEZ-LLAMAS, A.; GALINDO, J. et al. Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus schmitti (P?rez-Farfante & Kensley 1997). Aquaculture Research, v. 38, p. 689-695, 2007. AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for the examination of water and wastewater. Washington, 1998, 1193 p. AMINOT, A.; CHAUSSEPIED, M. Manuel des analyses chimiques en milieu marin. Brest: Cnexo, 1983, 395 p. AOAC. Official methods of analysis, 17? Ed. Association of Official Analytical Chemists, Gaithersburg, MD, 2000. ARANA, L. V. Qualidade da ?gua em aquicultura: princ?pios e pr?ticas. 3? Ed. Santa Catarina: Editora UFSC, 2010. 238 p. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, p. 227?235, 1999. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O. et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, p. 163?172, 2010. BARBIERI, R. Acute toxicity of ammonia in white shrimp (Litopenaeus schmitti) (Burkenroad, 1936, Crustacea) at different salinity levels. Aquaculture, 306, p. 329?333, 2010. BRITO, R.; CHIMAL, M-E; ROSAS, C. Effect of salinity in survival, growth, and osmotic capacity of early juveniles of Farfantepenaeus brasiliensis (decapoda:penaeidae). Journal of Experimental Marine Biology and Ecology, 244, p. 253?263, 2000. BROWDY, C. L.; BRATVOLD, D.; STOKES, A. D. et al. Perspectives on the application of closed shrimp culture systems. In: SPECIAL SESSION ON SUSTAINABLE SHRIMP CULTURE, 2001, Baton Rouge. Proceedings of the Special Session on Sustainable Shrimp Culture. Baton Rouge, LA, USA: E.D. Jory & C.L. Browdy, 2001, p. 20-34. BURFORD, M. A.; THOMPSON, P. J.; McINTOSH, R. P. et al. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232, p. 525?537, 2004. CHEN, J. C.; LIN, C .Y. Lethal effects of ammonia and nitrite on Penaeus penicillatus juveniles at two salinity levels. Comparative Biochemistry and Physiology, 100, p. 466? 482, 1991. 85 CHEN, J. C.; NAN, F. H. Oxygen consumption and ammonia-N excretion of Penaeus chinensis (Osbeck,1765) juveniles at different salinity levels (Decapoda: Penaeidae). Crustaceana, v. 68, n. 6, p. 712?719, 1995. COSTA, R. C.; FRANSOZO, A.; MELO, G. A. S. et al. Chave ilustrada para identifica??o dos camar?es Dendrobranchiata do litoral norte do estado de S?o Paulo, Brasil. Biota Neotropica, v. 3, n.1, p. 1-12, 2003. DALL, W.; HILL, B. J.; ROTHLISBERG, P. C. et al. The biology of Penaeidae. Advances in Marine Biology, v. 27, p. 1- 484, 1990. DECAMP, O.; CODY, J.; CONQUEST, L. et al. Effect of salinity on natural community and production of Litopenaeus vannamei (Boone) within experimental zero-water exchange culture systems. Aquaculture Research, 34, p.345-355, 2003. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T. et al. The basics of bioflocs technology: the added value for aquaculture. Aquaculture, 277, p. 125?137, 2008. EMERENCIANO, M.; BALLESTER, E. L. C.; CAVALLI, R. O. et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43, p. 447?457, 2012. FOLCH, J. M.; LEES, M.; SLOANE-STANLEY, G. H. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, p. 497-507, 1957. FRAGA, I.; GALINDO, J.; ARAZOZA, M. et al. Evaluaci?n de niveles de prote?na y densidades de siembra em el crecimiento del camar?n blanco Litopenaeus schmitti. Revista de Investigacines Marinas, v. 23, n. 2, p. 141-147, 2002. GIROTTO, M. F. V. Efeitos da ammonia sobre juvenis de Litopenaeus vannamei (Boone, 1931) e Litopenaeus schmitti (Burkenroad, 1936): excre??o e toxicidade. 2010. 79 f. Disserta??o (Mestrado em Ci?ncias Veterin?rias) ? Universidade Federal do Paran?, Paran?, 2010. G?MEZ-JIM?NEZ, S.; GONZ?LEX-F?LIX, M. L.; PEREZ-VELAZQUEZ, M. et al. Effect of dietary protein level on growth, survival and ammonia efflux rate of Litopenaeus vannamei (Boone) raised in a zero-water exchange culture system. Aquaculture Research, 36, p. 834-840, 2005. GONZ?LEZ-F?LIX, G?MEZ-JIM?NEZ, S.; PEREZ-VELAZQUEZ, M. et al. Nitrogen budget for a low salinity, zero-water Exchange culture system: I. Effect of dietary protein level on the performance of Litopenaeus vannamei (Boone). Aquaculture Research, 38, p. 798-808, 2007. GRIFFITH, R. E. Phytoplankton of Chesapeake Bay: An illustrated guide to the genera. University of Maryland Natural Resources Institute, 1967, 78 p. HARDY, R. W. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, v.41, p.770?776, 2010. 86 IZQUIERDO, M.; FORSTER, I.; DIVAKARAN, S. et al. Effect of green and clear water and lipid source on survival, growth and biochemical composition of Pacific white shrimp Litopenaeus vannamei. Aquaculture Nutrition, 12, p. 192?202, 2006. JORY, D. E.; CABRERA, T. R.; DUGGER, D. M. et al. A global review of shrimp feed management: status and perspectives. In: Special Session on Sustainable Shrimp Culture, 2001, Baton Rouge, L.A. Proceedings of the Special Session on Sustainable Shrimp Culture, Baton Rouge, L.A: The World Aquaculture Society, 2001, p. 135. JU, Z. Y.; FORSTER, I.; CONQUEST, L. et al. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39, p. 118-133, 2008. KHATOON, H.; YUSOFF, F. M.; BANERJEE, S. et al. Use of periphytic cyanobacterium and mixed diatoms coated of Penaeus monodon Fabricius postlarvae. Aquaculture, 271, p. 196-205, 2007. KOROLEFF, F; PALMORK, K. H. Report on the Ices/Scor Nutrient Intercalibration Experiment. ICES, C.M. Hydr.Comm, 1972. KRUMMENAUER, D.; SEIFERT JR., C. A.; POERSCH, L. H. et al. Cultivo de camar?es marinhos em sistema de bioflocos: an?lise da reutiliza??o da ?gua. Atl?ntica, Rio Grande, v. 34, n. 2, p. 103-111, 2012. KUHN, D. D.; BOARDMAN, G. D.; LAWRENCE, A. L. et al. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture, 296, p. 51-57, 2009. LAMELA, R. E. L.; COFFIGHY, R. S.; QUINTANA, Y. C. et al. Phenoloxidse and peroxidase activity in the shrimp Litopenaeus schmitti, P?rez-Farfante and Kensley (1997) exposed to low salinity. Aquaculture Research, v. 36, p. 1293-1297, 2005. LEI, C. H.; HSIEH, L. Y.; CHEN, C. K. Effects of salinity on the oxygen consumption and ammonia-N excretion of young juvenile of the grass shrimp, Penaeus monodon Fabricius. Bulletin of the Institute of Zoology, Academia Sinica, 28, p. 245-256, 1989. LI, E.; CHEN, L.; ZENG, C. et al. Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture, 265, p. 385?390, 2007. LIAO, I. C.; MURAI, T. Effects of dissolved oxygen, temperature and salinity on the oxygen consumption of the grass shrimp, Penaeus monodon. In: The First Asian Fisheries Forum. Asian Fisheries Society, Manila, Phillippines, p. 641-646, 1986. LIGNOT, J. H.; COCHARD, J. C.; SOYEZ, C. et al. Osmoregulatory capacity according to nutritional status, molt stage and body weight in Penaeus stylirostris. Aquaculture, v. 170, n. 1, p.79?92, 1999. LIN, Y. C.; CHEN, J. C. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259, p. 109? 119, 2001. 87 LIN, Y. C.; CHEN, J. C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224, p. 193-201, 2003. L?PEZ. J. G. Aproximaci?n a los requerimientos nutricionales de juveniles de camar?n blanco Penaeus schmitti: evaluaci?n de niveles y fuentes de prote?na em la dieta. Disserta??o de Biolog?a, Universidad de La Habana, 98 p, 1999. MAICA, P. F.; BORBA, M. R.; WASIELESKY JR, W. Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water-exchange super-intensive system. Aquaculture Research, 43, p. 361?370, 2012. MARTINEZ-CORDOVA, L. R., CAMPA?A-TORRES, A.; PORCHAS-CORNEJO, M. A. The effects of variation in feed protein level on the culture of white shrimp, Litopenaeus vannamei (Boone) in low-water exchange experimental ponds. Aquaculture Research, 33, p. 995-998, 2002. MARTINEZ-CORDOVA, L. R., CAMPA?A-TORRES, A.; PORCHAS-CORNEJO, M. A. Dietary protein level and natural food management in the culture of blue Litopenaeus stylirostris and white shrimp Litopenaeus vannamei in microcosms. Aquaculure Nutrition, 9, p. 155?160, 2003. MCINTOSH, D.; SAMOCHA, T. M.; JONES, E. R. et al. Effects of two commercially available low-protein diets (21% and 31%) on water and sediment quality, and on the production of Litopenaeus vannamei in an outdoor tank system with limited water discharge. Aquacultural Engineering, 25, p. 69?82, 2001. MOSS, S. M., DIVAKARAN, S., KIM, B. G. Stimulating effects of pond water on digestive enzyme activity in the Pacific white shrimp, Litopenaeus vannamei (Boone). Aquaculture Research, 32, p. 125?131, 2001. MOSS, S. M.; FORSTER, I. P.; TACON, A. G. J. Sparing effect of pond water on vitamins in shrimp diets. Aquaculture, 258, p. 388?395, 2006. NEEDHAM, P. R. Guias para el reconocimiento de algas e invertebrados dulceacu?cuolas. 5? edi??o, p. 3 ? 225, 1973. O?BRIEN, C. J. The effects of temperature and salinity on growth and survival of juveniles Tiger prawns Penaeus esculentus (Haswell). Journal of Experimental Marine Biology and Ecology, v. 183, p. 133-145, 1994. OCAMPO, L.; VILLARREAL, H.; VARGAS, M. et al. Effect of dissolved oxygen and temperature on growth, survival and body composition of juvenile Farfantepenaeus californiensis (Holmes). Aquaculture Research, v. 31, p. 167 ? 171, 2000. PALMER, C. M. Algae and water pollution an illustrated manual on the identification, significance, and control of algae in water supplies and in polluted water. U.S. Environmental Protection Agency Cincinnati, Ohio. 124 p, 1977. P?QUEUX, A. Osmotic regulation in Crustaceans. Journal of Crustacean Biology, 15, p.1?60. 1995. 88 P?REZ-FARFANTE, I. Western Atlantic shrimp of the genus Penaeus. Fishery Bulletin, v. 67, n. 3, p. 461-591, 1969. P?REZ FARFANTE, I.; KENSLEY, B. Penaoeid and Sergestoid Shrimps and Prawns of the World: Keys and Diagnoses for the Families and Genera. ?ditions du Mus?um Paris, 1997, p. 91. PEREZ-VELAZQUEZ, M.; GONZ?LEX-F?LIX, M. L.; JAIMES-BUSTAMENTE, F. et al. Investigation of the Effects of Salinity and Dietary Protein Level on Growth and Survival of Pacific White Shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, v. 38, n. 4, p. 475-485, 2007. PEREZ-VELAZQUEZ, M.; GONZ?LEZ-F?LIX, M. L.; G?MEZ-JIM?NEZ, S. et al. Nitrogen budget for a low-salinity, zero-water exchange culture system: II. Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeus vannamei (Boone). Aquaculture Research, 39, p. 995-1004, 2008. PONCE-PALAFOX, J.; MARTINEZ-PALACIOS, C. A.; ROSS, L. G. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone,1931. Aquaculture, v. 157, p. 107-115, 1997. RAMOS, R.; ANDREATTA, E. Requerimientos de prote?na y energ?a bruta en juveniles de camar?n rosado Farfantepenaeus paulensis (P?rez-Farfante, 1967) sometidos a diferentes salinidades. Latin American Journal of Aquatic Research, v. 39, n. 3, p. 427-438, 2011. RAY, J. A.; LEWIS, B. L.; BROWDY, C. L. et al. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299, p. 89?98, 2010. REBELO, M. F.; RODR?GUEZ, E. M.; SANTOS, E. A. et al. Histopathological changes in gills of the esturaine crab Chasmagnathus granulata (Crustacea-Decapoda) following actue exposure to ammonia. Comparative Biochemistry and Physiology, 125, p. 157?164, 2000. ROMANO, N.; ZENG, C. The effects of salinity on the survival, growth and haemolymph osmolality of early juvenile blue swimmer crabs, Portunus pelagicus. Aquaculture, 260, p. 151?162, 2006. ROMANO, N.; ZENG, C. Ontogenetic changes in tolerance to acute ammonia exposure and associated gill histological alterations during early juvenile development of the blue swimmer crab, Portunus pelagicus. Aquaculture, 266, p. 246?254, 2007. ROMANO, N.; ZENG, C. Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture, 334-337, p. 12?23, 2012. ROSAS, C.; S?NCHEZ, A.; D?AZ-IGLESA, E. et al. Critical dissolved oxygen level to Penaeus setiferus and Penaeus schmitti postlarvae (PL 10-18) exposed to salinity changes. Aquaculture, 152, p. 259 ? 272, 1997. 89 SALZE, G.; McLEAN, E.; BATTLE, P. R. et al. Use of soy protein concentrate and novel ingredients in the total elimination of fish meal and fish oil in diets for juvenile cobia, Rachycentron canadum. Aquaculture, 298, p. 294?299, 2010. SAMOCHA, T. M.; LAWRENCE, A. L.; HOROWITZ, A. et al. The use of commercial probiotics in the production of marine shrimp under no water exchange. In: The Second International Conference on Recirculating Aquaculture, 1998. Virginia Polytechnic Institute, 1998, p. 373?375. SAMOCHA, T. M.; LAWRENCE, A. L.; COLLINS, C. A. et al. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal of Applied Aquaculture, 15, n. 3-4, p.1?19, 2004. SAMOCHA, T. M.; PATNAIK, S.; SPEED, M. et al. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36: 184?191, 2007. SETIARTO, A.; STR?SSMANN, C. A.; TAKASHIMA, F. et al. Short-term responses of adult kuruma shrimp Marsupenaeus japonicus to environmental salinity: osmotic regulation, oxygen consumption and ammonia excretion. Aquaculture Research, 35, p. 669?677, 2004. SHIAU, S. Y.; KWOK, C. C.; CHOU, B. S. Optimal dietary protein level of Penaeus monodon reared in seawater and brackish water. Nippon Suisan Gakkaishi, 57, p. 711-716, 1991. SHIAU, S. Y. Nutrient requirements of penaeid shrimp. Aquaculture, 164, p.77-93, 1998. SILVA, K. R.; WASIELESKY JR., W.; ABREU, P. Nitrogen and phosphorus dynamics in the biofloc production of the pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, v. 44, n. 1, p. 30-41, 2013. TENDULKAR, M.; KULKARNI, A. S. Effect of Different Dietary Protein levels on Growth, Survival and Biochemical aspects of Banana prawn, Fenneropenaeus merguiensis (De Man, 1888). International Journal of Biological & Medical Research, v. 2, n. 4, p. 1140-1143, 2011. VAN WYK, P.; SCARPA, J. Water quality and management. In: Van Wyk, P., M. Davis-Hodgkins, R. Laramore, K.L. Main, J. Mountain & J. Scarpa. Farming Marine Shrimp in Recirculating Freshwater Systems. Florida Department of Agriculture and Consumer Services, Tallahassee, p. 128?138, 1999. WASIELESKY, W.; ATWOOD, H.; STOKES, A. et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258, p. 396 - 403, 2006. WEIHRAUCH, D., MORRIS, S., TOWLE, D. W. A review ? ammonia excretion in aquatic and terrestrial crabs. Journal of Experimental Biology, 207, p. 4491? 4504, 2004. XU, W. J.; PAN, L.; ZHAO, D. et al. Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, 350-353, p. 147 ? 153, 2012. 90 XU, W-J.; PAN, L-Q. Enhancementet of imune response and antioxidante status of Litopenaeus vannamei juveniles in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquacuture, v. 412-413, p. 117-124, 2013. ZAR, J. H. Biostatistical Analysis. Third Edition New Jersey: Prentice Hall, 1996. 662 p.Agregados microbianosCamar?o pene?deoCrescimentoMicrobial aggregatesPenaeid shrimpGrowthZootecniaAvalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocosEvaluation of intensive farming of the white shrimp Litopenaeus schmitti with biofloc technologyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2013 - Michelle Midori Sena Fugimura.pdf.jpg2013 - Michelle Midori Sena Fugimura.pdf.jpgimage/jpeg1943http://localhost:8080/tede/bitstream/jspui/4246/4/2013+-+Michelle+Midori+Sena+Fugimura.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD54TEXT2013 - Michelle Midori Sena Fugimura.pdf.txt2013 - Michelle Midori Sena Fugimura.pdf.txttext/plain253486http://localhost:8080/tede/bitstream/jspui/4246/3/2013+-+Michelle+Midori+Sena+Fugimura.pdf.txtbed1ace95ab2cc4dc1e8f8b4099c4234MD53ORIGINAL2013 - Michelle Midori Sena Fugimura.pdf2013 - Michelle Midori Sena Fugimura.pdfapplication/pdf1218148http://localhost:8080/tede/bitstream/jspui/4246/2/2013+-+Michelle+Midori+Sena+Fugimura.pdfb9681043f2f3db0d6e5529c27d1515cfMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/4246/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/42462022-10-05 13:11:59.587oai:localhost:jspui/4246Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-10-05T16:11:59Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos
dc.title.alternative.eng.fl_str_mv Evaluation of intensive farming of the white shrimp Litopenaeus schmitti with biofloc technology
title Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos
spellingShingle Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos
Fugimura, Michelle Midori Sena
Agregados microbianos
Camar?o pene?deo
Crescimento
Microbial aggregates
Penaeid shrimp
Growth
Zootecnia
title_short Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos
title_full Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos
title_fullStr Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos
title_full_unstemmed Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos
title_sort Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos
author Fugimura, Michelle Midori Sena
author_facet Fugimura, Michelle Midori Sena
author_role author
dc.contributor.advisor1.fl_str_mv Oshiro, Lidia Miyako Yoshii
dc.contributor.advisor1ID.fl_str_mv 987.007.668-87
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8112019853480327
dc.contributor.advisor-co1.fl_str_mv Wasielesky Junior, Wilson
dc.contributor.authorID.fl_str_mv 085.720.727-14
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6107371291793259
dc.contributor.author.fl_str_mv Fugimura, Michelle Midori Sena
contributor_str_mv Oshiro, Lidia Miyako Yoshii
Wasielesky Junior, Wilson
dc.subject.por.fl_str_mv Agregados microbianos
Camar?o pene?deo
Crescimento
topic Agregados microbianos
Camar?o pene?deo
Crescimento
Microbial aggregates
Penaeid shrimp
Growth
Zootecnia
dc.subject.eng.fl_str_mv Microbial aggregates
Penaeid shrimp
Growth
dc.subject.cnpq.fl_str_mv Zootecnia
description The biofloc technology (BFT) has emerged through the search for techniques to make aquaculture more environmentally sustainable, while maintaining the high production and profitability. Better growth and productivity have been checked for several species of cultured penaeid BFT system compared to conventional systems, but information on Litopenaeus schmitti farming using this technology are limited. This study aimed to verify the technical feasibility of the intensive farming of shrimp L. schmitti in BFT system. Three experiments were carried out at the Marine Biology Station of UFRRJ (Mangaratiba, RJ). Juvenile shrimps were wild caught in Sepetiba Bay, Rio de Janeiro, and underwent an acclimation period of ten days in tanks with clear water before the start of the studies. In the first experiment, the contribution of microbial aggregates in feeding (biofloc and biofloc with feed) of shrimp L. schmitti grown at high stocking densities (100, 200 and 300 shrimp/m2), was evaluated for 60 days. The results suggest that juvenile L. schmitti benefited from the availability of additional nutritional source, represented by biofloc, however, these should be regarded as a additional dietary to rations diet. Stocking densities evaluated affected the productivity, growth and survival of L. schmitti, but the survival of approximately 80 % showing the potential of the species in super intensive culture conditions. The second experiment was conducted to verify the possibility of using the barley bagasse as a source of organic carbon in the system BFT fertilization, and to this end, compared to fertilization with barley bagasse, sugar cane molasses and cassava flour during the period of 60 days. The results of water quality, biofloc composition and growth of shrimp confirmed that the barley bagasse can be a suitable option and cost in areas near the breweries. Already, in the third experiment, the growth performance of L. schmitti, water quality and the biofloc formation were evaluated at three salinities (19, 26 and 33) and using two commercial diets (30 and 40 % protein) in static farming system throughout 35 days. Through the performance of L. schmitti obtained in the different treatments was evident that the farming can be done in any of salinities evaluated and using the commercial diet containing the lower protein levels. Thus, the results of this study demonstrate the technical feasibility of intensive shrimp farming L. schmitti using biofloc technology.
publishDate 2013
dc.date.issued.fl_str_mv 2013-12-17
dc.date.accessioned.fl_str_mv 2020-12-08T10:54:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FUGIMURA, Michelle Midori Sena. Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos. 2013. 91 f. Tese (Programa de P?s-Gradua??o em Zootecnia) - Universidade Federal Rural do Rio de Janeiro, Serop?dica.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/4246
identifier_str_mv FUGIMURA, Michelle Midori Sena. Avalia??o da cria??o intensiva do camar?o branco Litopenaeus schmitti com a tecnologia de bioflocos. 2013. 91 f. Tese (Programa de P?s-Gradua??o em Zootecnia) - Universidade Federal Rural do Rio de Janeiro, Serop?dica.
url https://tede.ufrrj.br/jspui/handle/jspui/4246
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ANDERSON, R. K.; PARKER, P. L.; LAWRENCE, A. L. A13C/12C tracer study of the utilization of presented feed by commercially important shrimp Penaeus vannamei in a pond grow out system. Journal of the World Aquaculture Society, 18, p. 148-155, 1987. ARNOLD, S. J.; COMAN, F. E.; JACKSON, C. J. et al. High-intensivy, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293, p. 42 ? 48, 2009. AVNIMELECH, Y.; KOCHVA, M.; DIAB, S. Development of controlled intensive aquaculture systems with limited water exchange and adjusted carbon to nitrogen ratio. Israeli Journal of Aquaculture, 46, p. 119-131, 1994. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, p. 227?235, 1999. AVNIMELECH, Y. Feeding with microbial flocs by tilapiain minimal discharge bio-flocs technology ponds. Aquaculture, 264, p. 140-147, 2007. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O. et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, p. 163?172, 2010. BARBIERI, R. C.; OSTRENSKY, A. Camar?es Marinho ? Engorda. Vi?osa ? MG: Aprenda F?cil Editora, 2002. 351 p. BROWDY, C. L.; BRATVOLD, D.; STOKES, A. D. et al. Perspectives on the application of closed shrimp culture systems. In: SPECIAL SESSION ON SUSTAINABLE SHRIMP CULTURE, 2001, Baton Rouge. Proceedings of the Special Session on Sustainable Shrimp Culture. Baton Rouge, LA, USA: E.D. Jory & C.L. Browdy, 2001, p. 20-34. BROWDY, C. L.; MOSS, S. M. Shrimp culture in urban, super-intensive closed systems. In: URBAN AQUACULTURE, 2005, Oxford, UK: ed. by B.A. Costa Pierce, 2005, p.173-186. BUENO, S. L. S. Maturation and spawning of the white shrimp Penaeus schmitti Burkenroad, 1936, under large scale rearing conditions. Journal of the World Aquaculture Society, v. 21, n. 3, p. 170-179, 1990. BURFORD, M. A.; SELLARS, M. J.; ARNOLD, S. J. et al. Contribution of natural biota associated with substrates to the nutritional requirements of the post-larval shrimp, Penaeus esculentus (Haswell) in high-density rearing systems. Aquaculture Research, 35, p. 508-515, 2004. CHEN, Y. L.; CHEN, H. Juvenile Penaeus monodon as effective zooplankton predators. Aquaculture, 103, p. 35?44, 1992. 8 CRAB, R.; AVNIMELECH, Y.; DEFOIRDT, T. et al. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270, p. 1 ? 14, 2007. CRAB, R.; KOCHVA, M.; VERSTRAETE, W. et al. Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40, p. 105-112, 2009. CRAB, R.; LAMBERT, A.; DEFOIRDT, T. et al. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. Journal of Applied Microbiology, 109, p. 1643?1649, 2010. COHEN, J.; SAMOCHA, T. M.; FOX, J. M. et al. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools. Aquacultural Engineering, 32, p. 425-442, 2005. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T. et al. The basics of bioflocs technology: the added value for aquaculture. Aquaculture, 277, p. 125?137, 2008. D?INCAO, F.; VALENTINI, H.; RODRIGUES, L. F. Avalia??o da pesca de camar?es nas regi?es sudeste e sul do Brasil. Atl?ntica, v. 24, n. 2, p. 103-116, 2002. EBELING, J. M.; TIMMONS, M. B.; BISOGNI, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia?nitrogen in aquaculture systems. Aquaculture, 257, p. 346?358, 2006. EMERENCIANO, M.; BALLESTER, E. L. C.; CAVALLI, R. O. et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43, p. 447?457, 2012. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). 2012. The State of World Fisheries and Aquaculture. Dispon?vel em: <http://www.fao.org/docrep/016/i2727e/i2727e00.htm> Acesso em: 20/07/2012. HAMLIN, H. J.; MICHAELS, J. T.; BEAULATON, C. M. et al. Comparing denitrification rates and carbon sources in commercial scale up flow denitrification biological filters in aquaculture. Aquacultural Engineering, 38, p. 79?92, 2008. HARGREAVES, J. A. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34, p. 344-363, 2006. HOPKINS, J. S.; HAMILTON, R. D.; SANDIFER, P. A. et al. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. Journal of the World Aquaculture Society, 24, p. 304?320, 1993. JORAND, F., ZARTARIAN, F.; THOMAS, F. et al. Chemical and structural (2d) linkage between bacteria within activated-sludge flocs. Water Research, v. 29, n. 7, p. 1639?1647, 1995. 9 MARCHIORI, M. A. Guia ilustrado de matura??o e larvicultura do camar?o-rosa Penaeus paulensis P?rez- Farfante, 1967. Rio Grande: FURG, 1996. MCABEE, B. J. BROWDY, C.; RHODES, R. et al. The use of greenhouse-enclosed raceway systems for the superintensive production of pacific white shrimp Litopenaeus vannamei in the United States. Global Aquaculture Advocate, 6, p. 40 ? 43, 2003. MICHAUD, L.; BLANCHETON, J. P.; BRUNI, V. et al. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquacultural Engineering, 34, p. 224- 233, 2006. MINIST?RIO DA PESCA E AQUICULTURA (MPA). Boletim Estat?stico da Pesca e Aquicultura. Bras?lia, 128 p., 2012. MISHRA, J. K.; SAMOCHA, T. M.; PATNAIK, S. et al. Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering, 38, p. 2-15, 2008. MOSS, S. M. Dietary importance of microbes and detritus in penaeid shrimp aquaculture. In: Microbial Approaches to Aquatic Nutrition within Environmentally Sound Aquaculture Production Systems, Baton Rouge, USA: World Aquaculture Society, 2002, p. 1-18. OTOSHI, C.; TANG, L. R.; DAGDAGAN, D. V. et al. Super-intensive grow out of the Pacific white shrimp, Litopenaeus vannamei: Recent advances at the Oceanic Institute. In: International Conference on Recirculating Aquaculture, 6, 2006, VA. Proceedings from the 6th International Conference on Recirculating Aquaculture. VA, 2006, p. 1-5. P?REZ FARFANTE, I.; KENSLEY, B. Penaoeid and Sergestoid Shrimps and Prawns of the World: Keys and Diagnoses for the Families and Genera. ?ditions du Mus?um Paris, p. 91, 1997. RAY, A. J.; DILON, K. S.; LOTZ, J. M. Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacultural Engineering, 45, p.127? 136, 2011. ROCHA, I. P. Uma an?lise da produ??o, demanda e pre?os do camar?o no mercado internacional. Revista Brasileira da Associa??o de Criadores de Camar?o, Recife, v. 7, n. 2, p. 24-35, 2005. SAMOCHA, T. M.; LAWRENCE, A. L.; COLLINS, C. A. et al. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal of Applied Aquaculture,15, n. 3-4, p.1?19, 2004. SAMOCHA, T. M. et al. Intensive raceways without water exchange analyzed for white shrimp culture. Global Aquaculture Advocate, 13, p. 22?24, 2010. SANDIFER, P. A.; HOPKINS, J. S.; STOKES, A. D. et al. Preliminary comparisons of the native Penaeus setiferus and Pacific Penaeus vannamei white shrimp for pond culture in South Carolina, USA. Journal World Aquaculture, v. 24, n. 3, p. 295?303, 1993. 10 SORGELOOS, P. Technologies for sustainable aquaculture development, Plenary Lecture II. In: Aquaculture in the Third Millennium.Technical Proceedings of the Conference on Aquaculture in the Third Millennium, NACA, Bangkok, Thailand, February 2000. Ed. by Subasinghe, R. P; Bueno, P.; Philips, M. J. et al. FAO, Rome, Italy, p. 23?28, 2001. WASIELESKY, W.; ATWOOD, H.; STOKES, A. et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258, p. 396?403, 2006. ZHAO, P.; HUANG, J.; WANG, X-H. et al. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture, 354?355, p. 97?106, 2012. AGUILAR, V.; RACOTTA, I. S.; GOYTORT?A, E. et al. The influence of dietary arachidonic acido n the imune response and performance of Pacific whiteleg shrimp, Litopenaeus vannamei, at high stocking density. Aquaculture Nutrition, 18, p. 258-271, 2012 ALLAN, G. F.; MORIARTY; D. J. W.; MAGUIRE, G. B. Effects of pond preparation and feeding rate on production of Penaeus monodon Fabricius, water quality, bacteria and benthos in model farming ponds. Aquaculture, 130, p. 329?349, 1995. ALONSO-RODRIGUEZ, R.; PAEZ-OSUNA, F. Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture, 219, p. 317?336, 2003. AOAC. Official methods of analysis, 17? Ed. Association of Official Analytical Chemists, Gaithersburg, MD, 2000. AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for the examination of water and wastewater. Washington, 1998, 1193 p. AMINOT, A.; CHAUSSEPIED, M. Manuel des analyses chimiques en milieu marin. Brest: Cnexo, 1983, 395 p. ARNOLD, S. J.; COMAN, F. E.; JACKSON, C. J. et al. High-intensivy, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293, p. 42 ? 48, 2009. AVNIMELECH, Y.; KOCHVA, M.; DIAB, S. Development of controlled intensive aquaculture systems with limited water exchange and adjusted carbon to nitrogen ratio. Israeli Journal of Aquaculture, 46, p. 119-131, 1994. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, p. 227?235, 1999. ______. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264, p. 140-147, 2007. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O. et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, p. 163- 172, 2010. BIEDENBACH, J. M.; SMITH, L. L.; THOMSEN, T. K. et al. Use of nematode Panagrellus redivivus as an Artemia replacement in a larval penaeid diet. Journal of the World Aquaculture Society, v. 20, n. 2, p. 61?71, 1989. BOYD, C. E. Water quality management and aeration in shrimp farming. Fisheries and Allied Aquacultures Department, Series No. 2, Alabama Agricultural Experiment Station, Auburn University, Alabama Birmingham.,183 p., 1989. 31 BURFORD, M. A. Phytoplankton dynamics in shrimp ponds. Aquaculture Research, 28, p. 351-360, 1997. BURFORD, M. A.; THOMPSON, P. J.; McINTOSH, R. P. et al. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture, 219, p. 393-411, 2003. COHEN, J.; SAMOCHA, T. M.; FOX, J. M. et al. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools. Aquacultural Engineering, 32, p. 425-442, 2005. CRAB, R.; CHIELENS, B.; WILLE, M. et al. The effect of different carbon sources on the nutritional nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41, p. 559-567, 2010. D?INCAO, F.; VALENTINI, H.; RODRIGUES, L. F. Avalia??o da pesca de camar?es nas regi?es sudeste e sul do Brasil. Atl?ntica, v. 24, n. 2, p. 103-116, 2002. DECAMP, O.; CONQUEST, L.; CODY, J. et al. Effect of shrimp stocking density on size-fractionated phytoplankton and ecological groups of ciliated protozea within zero-water exchange shrimp culture systems. Journal of the World Aquaculture Society, v. 38, n. 3, p. 395 ? 406, 2007. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T. et al. The basics of bioflocs technology: the added value for aquaculture. Aquaculture, 277, p. 25?137, 2008. EBELING, J. M..; TIMMONS, M. B.; BISOGNI, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia?nitrogen in aquaculture systems. Aquaculture, 257, p. 346?358, 2006. EMERENCIANO, M. G. C.; WASIELESKY, W. JR.; SOARES, R. B. et al. Crescimento e sobreviv?ncia do camar?o-rosa (Farfantepenaeus paulensis) na fase de ber??rio em meio heterotr?fico. Acta Scientarium Biological Sciences, v. 29, p. 1-7, 2007. EMERENCIANO, M.; BALLESTER, E. L. C.; CAVALLI, R. O. et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43, p. 447?457, 2012. FERREIRA, L. M. M. H. M. Forma??o de flocos microbianos em cultivo do camar?o-rosa Farfantepenaeus paulensis e do camar?o-branco Litopenaeus vannamei. 2008. 44 f. Disserta??o (Mestrado em Aq?icultura), Universidade Federal de Rio Grande, Rio Grande do Sul, 2008. F?ES, G. K.; FR?ES, C.; KRUMMENAUER, D. et al. Nursery of pink shrimp Farfantepenaeus paulensis in biofloc technology culture system: survival and growth at different stocking densities, Journal of Shelfish Research, v. 30, n.2, p. 367-373, 2011. FOLCH, J. M.; LEES, M.; SLOANE-STANLEY, G. H. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, p. 497-507, 1957. 32 FRAGA, I.; GALINDO, J.; ARAZOZA, M. et al. Evaluaci?n de niveles de prote?na y densidades de siembra em el crecimiento del camar?n blanco Litopenaeus schmitti. Revista de Investigaciones Marinas, v. 3, n. 2, p. 141-147, 2002. FUGIMURA, M. M. S. Efeito da temperatura e densidade de estocagem no crescimento e sobreviv?ncia de juvenis de Litopenaeus schmitti criado em cativeiro. Disserta??o (Mestrado em Zootecnia), Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, 45 p, 2009. FURTADO, P. S.; POERSCH, L. H.; WASIELESKY JR, W. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture, 231, p. 130-135, 2011. GALINDO, J.; ALVAREZ, J. S.; FRAGA, I. et al. Influencia de los niveles inclusion de lipidos em dietas para juveniles de camar?n blanco Penaeus schmitti. Revista Cubana de Investigaciones Pesqueras, 17, p. 23-36, 1992. GREEN, B. W.; SCHRADER, K. K.; PERSCHBACHER, P. W. Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. Aquaculture Research, p. 1 ? 17, 2012. GRIFFITH, R. E. Phytoplankton of Chesapeake Bay: An illustrated guide to the genera. University of Maryland Natural Resources Institute, 1967, 78 p. JORY, D. E.; CABRERA, T. R.; DUGGER, D. M. et al. A global review of shrimp feed management: status and perspectives. In: Special Session on Sustainable Shrimp Culture, 2001, Baton Rouge, L.A. Proceedings of the Special Session on Sustainable Shrimp Culture, Baton Rouge, L.A: The World Aquaculture Society, 2001, p. 135. JU, Z. Y.; FORSTER, I.; CONQUEST, L. et al. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39, p. 118-133, 2008. KHATOON, H.; YUSOFF, F. M.; BANERJEE, S. et al. Use of periphytic cyanobacterium and mixed diatoms coated of Penaeus monodon Fabricius postlarvae. Aquaculture, 271, p. 196-205, 2007. KUHN, D. D.; BOARDMAN, G. D.; LAWRENCE, A. L. et al. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture, 296, p. 51-57, 2009. KUMARLY, K.; DA JONES, A. B.; EAST, J. Comparative analysis of the growth and survival of Penaeus monodon (Fabricius) larvae, from protozoea I to postlarvae I, on live feeds, artificial diets and combinations of both. Aquaculture, 81, p. 27?45, 1989. KUMLU, M.; FLETCHER, D. J. The Nematode Panagrellus redivivus as an alternative live feed for larval Penaeus indicus. Israeli Journal of Aquaculture, v. 49, n. 12, p., 1997. KOROLEFF, F.; PALMORK, K. H. Report on the Ices/Scor Nutrient Intercalibration Experiment. ICES, C.M. Hydr.Comm, 1972. 33 LANARI, D.; BALLESTRAZZI, R.; TIBALDI, E. Effects of fertilization and stocking rate on the performance of Penaeus japonicus (Bate) in pond culture. Aquaculture, 83, p. 269? 279, 1989. LIN, Y.C.; CHEN, J. C. Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259, p. 109?119, 2001. LIN, Y. C; CHEN, J. C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224, p. 193?201, 2003. MAGUIRE, G.B.; LEEDOW, M. I. A study of the optimum stocking density and feeding rates for school prawns Metapenaeus macleayi (Haswell) in some Australian brackish water farming ponds. Aquaculture, 30, p. 285-297, 1983. M?RQUEZ, J. E. Q.; ANDREATTA, E. R.; VINATEA, L. et al. Efeito da densidade de estocagem nos par?metros zoot?cnicos da cria??o de camar?es Litopenaeus schmitti. Boletim do Instituto de Pesca, 38, p. 145-153, 2012. NAGANO, N.; DECAMP, O. Ingestion of a ciliated protozoa by first-feeding larval stage of Pacific white shrimp, Litopennaeus vannamei (Boone). Aquaculture Research, 35, p. 516?518, 2004. NEAL, R. S., COYLE, S. D.; TIDWELL, J. H. Evaluation of stocking density and light level on the growth and survival of the pacific white shrimp, Litopenaeus vannamei, reared in zero-exchange systems. Journal of the Word Aquaculture Society, v. 41, n. 4, p. 533-544, 2010. NEEDHAM, P. R. Guias para el reconocimiento de algas e invertebrados dulceacu?cuolas. 5? edi??o, p. 3 ? 225, 1973. NETO, J. D. Pesca de camar?es na costa norte do Brasil. Atl?ntica, 13, p. 21-28, 1991. NGA, B. T.; LQRLING, M. PEETERS, E. T. H. M. Chemical and physical effects of crowding on growth and survival of Penaeus monodon Frabricius post-larvae. Aquaculture, 246, p. 455-465, 2005. NOOTONG, K.; PAVASANT, P. Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system. Journal of the World Aquaculture Society, v. 42, n. 3, p. 339-346, 2011. PALMER, C. M. Algae and water pollution an illustrated manual on the identification, significance, and control of algae in water supplies and in polluted water. U.S. Environmental Protection Agency Cincinnati, Ohio. 124 pp, 1977. PARRA, R.; HERNANDEZ, L. Estudio preliminar de los requerimientos nutricionales de juveniles de camar?n blanco Penaeus schmitti (Burkenroad). Boletin Red Acuicultura, v. 6, n. 1, p. 12-16, 1992. PATIL, V.; K?LLQVIST, T.; OLSEN, E. et al. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International, 15, p. 1-9, 2007. 34 PENAFLORIDA, V. D. Interaction between dietary levels of calcium and phosphorus on growth of juvenile shrimp, Penaeus monodon. Aquaculture, 172, p. 281?289, 1999. RAY, J. A.; LEWIS, B. L.; BROWDY, C. L. et al. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299, p. 89?98, 2010. RENAULD, S. M.; VAN THINH, L.; PARRY, D. L. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture, 170, p. 147? 159, 1999. RUBRIGHT, J. S.; HARRELL, J. L.; HOLCOMB, H. W. et al. Responses of planktonic and benthic communities to fertilizer and feed applications in shrimp mariculture ponds. Journal of World Mariculture Society, 12, p. 281?299, 1981. SAMOCHA, T. M.; LAWRENCE, A. L.; COLLINS, C. A. et al. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal of Applied Aquaculture, v. 15, n. 3-4, p. 1?19, 2004. SAMOCHA, T. M.; PATNAIK, S.; SPEED, M. et al. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36: 184?191, 2007. SILVA, C. F.; BALLESTER, E.; MONSERRAT, J. et al. Contribution of microorganisms to the biofilm nutricional quality protein and lipid contents. Aquaculture Nutrition, 15, p. 507-514, 2008. TACON, A. G. J.; CODY, J. J.; CONQUEST, L. D. et al. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition, 8, p. 121?137, 2002. THOMPSON, F. L.; ABREU, P. C.; WASIELESKY, W. Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, 203, p. 263?278, 2002. VAN WYK, P.; SCARPA, J. Water quality and management. In: Van Wyk, P., M. Davis-Hodgkins, R. Laramore, K.L. Main, J. Mountain & J. Scarpa. Farming Marine Shrimp in Recirculating Freshwater Systems. Florida Department of Agriculture and Consumer Services, Tallahassee, pp. 128?138, 1999. VINATEA, L.A. Princ?pios qu?micos da qualidade de ?gua em aquicultura. Florian?plis, Universidade Federal de Santa Catarina, 166 pp, 1997. WASIELESKY, W.; POERSCH; L. H.; JENSEN, L. et al. Effect of stocking density on pen reared pink shrimp Farfantepenaeus paulensis (P?rez-Farfante, 1967) (Decapoda, Penaidae). Nauplius, v. 9, n. 2, p. 163-167, 2001. WASIELESKY, W.; ATWOOD, H.; STOKES, A. et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258, p. 396?403, 2006. ZAR, J. H. Biostatistical Analysis. Third Edition New Jersey: Prentice Hall, 1996. 662 p. 35 ZHAO, P.; HUANG, J.; WANG, X-H. et al. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture, 354?355, p. 97?106, 2012. ALBUQUERQUE, D. M. N. Res?duo desidratado de cervejaria para su?nos em crescimento e termina??o. 2009. 71 f. Disserta??o (Mestrado em ci?ncia animal), Universidade Federal do Piaui, Piaui, 2009. ALONSO-RODRIGUEZ, R.; PAEZ-OSUNA, F. Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture, 219, p. 317?336, 2003. AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for the examination of water and wastewater. Washington, 1998, 1193 p. AMINOT, A.; CHAUSSEPIED, M. Manuel des analyses chimiques en milieu marin. Brest: Cnexo, 1983, 395 p. AOAC. Official methods of analysis, 17? Ed. Association of Official Analytical Chemists, Gaithersburg, MD, 2000. ASADUZZAMAN, M.; WAHAB, M. A.; VERDEGEM, M. C. J. et al. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280, p. 117?123, 2008. ASADUZZAMAN, M.; RAHMAN, M. M.; AZIM, M. E. et al. Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture, 306, p.127-136, 2010. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, p. 227?235, 1999. AVNIMELECH, Y. Bio-filters: the need for an new comprehensive approach. Aquacultural Engineering, 34, p. 172?178, 2006. AVNIMELECH, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264, p. 140-147, 2007. AZIM, M. E.; LITTLE, D. C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, p. 29?35, 2008. BALLESTER, E. L .C.; WASIELESKY, W. JR.; CAVALLI, R. O. et al. Nursery of the pink shrimp Farfantepenaeus paulensis in cages with artificial substrates: biofilm composition and shrimp performance. Aquaculture, 265, p. 355?362, 2007. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O.et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, p. 163?172, 2010. BOYD, C. Water quality in ponds for aquaculture. Alabama: Aubum University, Alabama. Birmingham Publishing Co. 482 p, 1990. 56 BURFORD, M. A.; LORENZEN, K. Modeling nitrogen dynamics in intensive shrimp ponds: the role of sediments remineralization. Aquaculture, v. 229, n. 1?4, p. 129?145, 2004. CAPPELLE, E. R.; VALADARES FILHO, S. C.; SILVA, J. F. C. et al. Estimativas do valor energ?tico a partir de caracter?sticas qu?micas e bromatol?gicas dos alimentos. Revista Brasileira de Zootecnia, v.30, n.6, p. 1837-1856, 2001. COSTA, J. M. B.; MATTOS, W. R. S.; BIONDI, P. et al. Degradabilidade ruminal do res?duo ?mido de cervejaria. Boletim Ind?stria Animal, v.52, n.1, p.87-94, 1995. COSTA, A. D.; VIEIRA, A. A.; LIMA, C. A. R. et al. Desempenho de su?nos em crescimento (26-70 kg) alimentados com ra??es contendo baga?o de cevada. In: Zootec, S?o Paulo. Anais do Zootec, SP, 2009. CRAB, R.; KOCHVA, M.; VERSTRAETE, W. et al. Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40, p.105-112, 2009. CRAB, R.; CHIELENS, B.; WILLE, M. et al. The effect of different carbon sources on the nutritional nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41, p. 559-567, 2010. DECAMP, O.; CONQUEST, L.; CODY, J. et al. Effect of shrimp stocking density on size-fractionated phytoplankton and ecological groups of ciliated protozea within zero-water exchange shrimp culture systems. Journal of the World Aquaculture Society, v. 38, n. 3, p. 395 ? 406, 2007. DEPETERS, E. J.; CANT, J. P. Nutritional factors influencing the nitrogen composition of bovine milk: a review. Journal of Dairy Science, v.75, n.8, p. 2043-2070, 1992. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T. et al. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, 277, p.125-137, 2008. EMERENCIANO, M.; BALLESTER, E. L. C.; CAVALLI, R. O. et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43, p. 447?457, 2012. FERREIRA, L. M. M. H. M. Forma??o de flocos microbianos em cultivo do camar?o-rosa Farfantepenaeus paulensis e do camar?o-branco Litopenaeus vannamei. 2008. 44 f. Disserta??o (Mestrado em Aq?icultura), Universidade Federal de Rio Grande, Rio Grande do Sul, 2008. FOLCH, J. M.; LEES, M.; SLOANE-STANLEY, G .H. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, p. 497-507, 1957. GADELHA, R. G. F.; PRADO, J. P. S.; CAVALHEIRO, J. M. D. Farinha do baga?o de cevada em dietas para a engorda de camar?es marinhos. Ci?ncia Rural (online), v. 40, n. 1, p. 170 ? 174. GODOY, L. C.; ODEBRECHT, C.; BALLESTER, E. et al. Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquaculture International, 20, p. 559-569, 2012. 57 GRIFFITH, R. E. Phytoplankton of Chesapeake Bay: An illustrated guide to the genera. University of Maryland Natural Resources Institute, 1967, 78 p. HARGREAVES, J. A. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34, p. 344?363, 2006. HARI, B.; KURUP, B. M.; VARGHESE, J. T. et al. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture, 241, p. 179?194, 2004. JEFFREY, S. W.; HUMPHREY, G. F. New Spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochemie und Physiologic der Pflanzen, 167, p. 191-194, 1975. JORY, D. E.; CABRERA, T. R.; DUGGER, D. M. et al. A global review of shrimp feed management: status and perspectives. In: Special Session on Sustainable Shrimp Culture, 2001, Baton Rouge, L.A. Proceedings of the Special Session on Sustainable Shrimp Culture, Baton Rouge, L.A: The World Aquaculture Society, 2001, p. 135. JU, Z. Y.; FORSTER, I.; CONQUEST, L. et al. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39, p. 118-133, 2008. KHATOON, H.; YUSOFF, F. M.; BANERJEE, S. et al. Use of periphytic cyanobacterium and mixed diatoms coated of Penaeus monodon Fabricius postlarvae. Aquaculture, 271, p. 196-205, 2007. KOROLEFF, F.; PALMORK, K. H. Report on the Ices/Scor Nutrient Intercalibration Experiment. ICES, C.M. Hydr.Comm. 1972. KUMARLY, K., DA JONES, A. B.; EAST, J. Comparative analysis of the growth and survival of Penaeus monodon (Fabricius) larvae, from protozoea I to postlarvae I, on live feeds, artificial diets and combinations of both. Aquaculture, 81, p. 27?45, 1989. KUMLU, M.; FLETCHER, D. J. The Nematode Panagrellus redivivus as an alternative live feed for larval Penaeus indicus. Israeli Journal Aquaculture, v. 49, n. 1, p. 12-18, 1997. KUMLU, M.; FLETCHER, D. J.; FISHER, C. M. Larval pigmentation, survivaland growth of Penaeus indicus fed the nematode Panagrellus redivivus enriched with astaxanthin and various lipids. Aquaculture Nutrition, 4, p. 193?200, 1998. LEFLAIVE, J.; TEN-HAGE, L. Algal and cyanobacterial secondary metabolites in freshwaters a comparison of allelopathic compounds and toxins. Freshwater Biology, 52, p. 199 ? 214, 2007. LIN, Y. C., CHEN, J. C. Acut
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Zootecnia
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Zootecnia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/4246/4/2013+-+Michelle+Midori+Sena+Fugimura.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/4246/3/2013+-+Michelle+Midori+Sena+Fugimura.pdf.txt
http://localhost:8080/tede/bitstream/jspui/4246/2/2013+-+Michelle+Midori+Sena+Fugimura.pdf
http://localhost:8080/tede/bitstream/jspui/4246/1/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
bed1ace95ab2cc4dc1e8f8b4099c4234
b9681043f2f3db0d6e5529c27d1515cf
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220329073934336